A random variable X has density function given by:
f(x)= {3e^-3x
x is greater than or equal to 0, otherwise. Find the first four moments.
"E(X)=\\int^{\\infin}_0xf(x)dx=3\\int^{\\infin}_0xe^{-3x}dx=-\\frac{3(3x+1)e^{-3x}}{9}|^{\\infin}_0=1\/3"
"E(X^2)=\\int^{\\infin}_0x^2f(x)dx=3\\int^{\\infin}_0x^2e^{-3x}dx=-\\frac{3(9x^2+6x+2)e^{-3x}}{27}|^{\\infin}_0=2\/9"
"E(X^3)=\\int^{\\infin}_0x^3f(x)dx=3\\int^{\\infin}_0x^3e^{-3x}dx=-\\frac{3(9x^3+9x^2+6x+2)e^{-3x}}{27}|^{\\infin}_0=2\/9"
"E(X^4)=\\int^{\\infin}_0x^4f(x)dx=3\\int^{\\infin}_0x^4e^{-3x}dx=-\\frac{3(27x^4+36x^3+36x^2+24x+8)e^{-3x}}{27}|^{\\infin}_0=8\/27"
it was used integrating by parts:
"\\int fg'=fg-\\int f'g"
"\\int xe^{-3x}dx=-xe^{-3x}\/3-\\int (-e^{-3x}\/3)dx=-xe^{-3x}\/3-e^{-3x}\/9"
"\\int x^2e^{-3x}dx=-x^2e^{-3x}\/3-\\int 2x(-e^{-3x}\/3)dx=-x^2e^{-3x}\/3+\\frac{2}{3}(xe^{-3x}\/3+e^{-3x}\/9)"
"\\int x^3e^{-3x}dx=-x^3e^{-3x}\/3-\\int 3x^2(-e^{-3x}\/3)dx="
"=-x^3e^{-3x}\/3-x^2e^{-3x}\/3+\\frac{2}{3}(xe^{-3x}\/3+e^{-3x}\/9)"
"\\int x^4e^{-3x}dx=-x^4e^{-3x}\/3-\\int 4x^3(-e^{-3x}\/3)dx="
"=-x^4e^{-3x}\/3+\\frac{4}{3}(-x^3e^{-3x}\/3-x^2e^{-3x}\/3+\\frac{2}{3}(xe^{-3x}\/3+e^{-3x}\/9))"
Comments
Leave a comment