Question #272651

A random variable X has density function given by:

f(x)= {3e^-3x

x is greater than or equal to 0, otherwise. Find the first four moments.



1
Expert's answer
2021-11-30T17:13:52-0500

E(X)=0xf(x)dx=30xe3xdx=3(3x+1)e3x90=1/3E(X)=\int^{\infin}_0xf(x)dx=3\int^{\infin}_0xe^{-3x}dx=-\frac{3(3x+1)e^{-3x}}{9}|^{\infin}_0=1/3


E(X2)=0x2f(x)dx=30x2e3xdx=3(9x2+6x+2)e3x270=2/9E(X^2)=\int^{\infin}_0x^2f(x)dx=3\int^{\infin}_0x^2e^{-3x}dx=-\frac{3(9x^2+6x+2)e^{-3x}}{27}|^{\infin}_0=2/9


E(X3)=0x3f(x)dx=30x3e3xdx=3(9x3+9x2+6x+2)e3x270=2/9E(X^3)=\int^{\infin}_0x^3f(x)dx=3\int^{\infin}_0x^3e^{-3x}dx=-\frac{3(9x^3+9x^2+6x+2)e^{-3x}}{27}|^{\infin}_0=2/9


E(X4)=0x4f(x)dx=30x4e3xdx=3(27x4+36x3+36x2+24x+8)e3x270=8/27E(X^4)=\int^{\infin}_0x^4f(x)dx=3\int^{\infin}_0x^4e^{-3x}dx=-\frac{3(27x^4+36x^3+36x^2+24x+8)e^{-3x}}{27}|^{\infin}_0=8/27


it was used integrating by parts:

fg=fgfg\int fg'=fg-\int f'g


xe3xdx=xe3x/3(e3x/3)dx=xe3x/3e3x/9\int xe^{-3x}dx=-xe^{-3x}/3-\int (-e^{-3x}/3)dx=-xe^{-3x}/3-e^{-3x}/9


x2e3xdx=x2e3x/32x(e3x/3)dx=x2e3x/3+23(xe3x/3+e3x/9)\int x^2e^{-3x}dx=-x^2e^{-3x}/3-\int 2x(-e^{-3x}/3)dx=-x^2e^{-3x}/3+\frac{2}{3}(xe^{-3x}/3+e^{-3x}/9)


x3e3xdx=x3e3x/33x2(e3x/3)dx=\int x^3e^{-3x}dx=-x^3e^{-3x}/3-\int 3x^2(-e^{-3x}/3)dx=


=x3e3x/3x2e3x/3+23(xe3x/3+e3x/9)=-x^3e^{-3x}/3-x^2e^{-3x}/3+\frac{2}{3}(xe^{-3x}/3+e^{-3x}/9)


x4e3xdx=x4e3x/34x3(e3x/3)dx=\int x^4e^{-3x}dx=-x^4e^{-3x}/3-\int 4x^3(-e^{-3x}/3)dx=


=x4e3x/3+43(x3e3x/3x2e3x/3+23(xe3x/3+e3x/9))=-x^4e^{-3x}/3+\frac{4}{3}(-x^3e^{-3x}/3-x^2e^{-3x}/3+\frac{2}{3}(xe^{-3x}/3+e^{-3x}/9))




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS