E(X)=∫0∞xf(x)dx=3∫0∞xe−3xdx=−93(3x+1)e−3x∣0∞=1/3
E(X2)=∫0∞x2f(x)dx=3∫0∞x2e−3xdx=−273(9x2+6x+2)e−3x∣0∞=2/9
E(X3)=∫0∞x3f(x)dx=3∫0∞x3e−3xdx=−273(9x3+9x2+6x+2)e−3x∣0∞=2/9
E(X4)=∫0∞x4f(x)dx=3∫0∞x4e−3xdx=−273(27x4+36x3+36x2+24x+8)e−3x∣0∞=8/27
it was used integrating by parts:
∫fg′=fg−∫f′g
∫xe−3xdx=−xe−3x/3−∫(−e−3x/3)dx=−xe−3x/3−e−3x/9
∫x2e−3xdx=−x2e−3x/3−∫2x(−e−3x/3)dx=−x2e−3x/3+32(xe−3x/3+e−3x/9)
∫x3e−3xdx=−x3e−3x/3−∫3x2(−e−3x/3)dx=
=−x3e−3x/3−x2e−3x/3+32(xe−3x/3+e−3x/9)
∫x4e−3xdx=−x4e−3x/3−∫4x3(−e−3x/3)dx=
=−x4e−3x/3+34(−x3e−3x/3−x2e−3x/3+32(xe−3x/3+e−3x/9))
Comments