government claims that the stubble burning in the near by states follows a poisson process with a mean of 20 per day a) Estimate the probability of no burning per day
Given,
Stubble burning per day "(\\lambda)= 20"
Probability of no burning per day ?
"K=0"
So, the required probability"P(X=0)=\\frac{e^{-\\lambda}\\times \\lambda^k}{k!}"
Now, substituting the values,
"P(X=0)=\\frac{e^{-20}\\times 20^0}{0!}\\\\ \\\\\n\\Rightarrow P(X=0)=\\frac{e^{-20}}{1} =e^{-20}"
Comments
Leave a comment