Question #271904

A random variable X has the following probability mass function X 2 3 4 5 6 7 8 P(X=x) 1/16 2k 3/16 1/4 3/16 1/8 k i) Find k, hence determine the mean of the distribution. ii) Obtain �3≤�5) iii) Determine F(5)

1
Expert's answer
2021-11-29T13:09:00-0500

i)


116+2k+316+14+316+18+k=1\dfrac{1}{16}+2k+\dfrac{3}{16}+\dfrac{1}{4}+\dfrac{3}{16}+\dfrac{1}{8}+k=1

3k=3163k=\dfrac{3}{16}

k=116k=\dfrac{1}{16}

E(X)=2(116)+3(216)+4(316)+5(416)E(X)=2(\dfrac{1}{16})+ 3(\dfrac{2}{16})+ 4(\dfrac{3}{16})+ 5(\dfrac{4}{16})

+6(316)+7(216)+8(116)=5+ 6(\dfrac{3}{16})+ 7(\dfrac{2}{16})+ 8(\dfrac{1}{16})=5

ii)

P(3X5)=P(X=3)+P(X=4)P(3\leq X\leq 5)=P(X=3)+P(X=4)

+P(X=5)=216+316+416=916+P(X=5)=\dfrac{2}{16}+ \dfrac{3}{16}+ \dfrac{4}{16}=\dfrac{9}{16}

iii)


F(5)=f(2)+f(3)+f(4)+f(5)F(5)=f(2)+f(3)+f(4)+f(5)

=116+216+316+416=58=\dfrac{1}{16}+\dfrac{2}{16}+ \dfrac{3}{16}+ \dfrac{4}{16}=\dfrac{5}{8}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS