Question #271705

A probability density function of a discrete random variable x is given by

f(x)={(1/2)x x=1,2,3,... 0 elsewhere}

use pgf to find a)E(x) b)V(x)




1
Expert's answer
2021-11-29T19:13:56-0500
n=1qn=q1q,q<1\displaystyle\sum_{n=1}^{\infin}q^n=\dfrac{q}{1-q}, |q|<1

Differentiate both sides of the equality with respect to qq


n=1nqnq=1(1q)2\displaystyle\sum_{n=1}^{\infin}\dfrac{nq^n}{q}=\dfrac{1}{(1-q)^2}

n=1nqn=q(1q)2\displaystyle\sum_{n=1}^{\infin}nq^n=\dfrac{q}{(1-q)^2}

Similarly

Differentiate both sides of the equality with respect to qq


n=1n2qnq=1(1q)2+2q(1q)3\displaystyle\sum_{n=1}^{\infin}\dfrac{n^2q^n}{q}=\dfrac{1}{(1-q)^2}+\dfrac{2q}{(1-q)^3}


n=1n2qn=q(1q)2+2q2(1q)3\displaystyle\sum_{n=1}^{\infin}n^2q^n=\dfrac{q}{(1-q)^2}+\dfrac{2q^2}{(1-q)^3}

a)


E(X)=x=1x(12)xE(X)=\displaystyle\sum_{x=1}^{\infin}x(\dfrac{1}{2})^xq=1/2,n=xq=1/2, n=x

E(X)=x=1x(12)x=1/2(11/2)2=2E(X)=\displaystyle\sum_{x=1}^{\infin}x(\dfrac{1}{2})^x=\dfrac{1/2}{(1-1/2)^2}=2

b)


E(X2)=x=1x2(12)xE(X^2)=\displaystyle\sum_{x=1}^{\infin}x^2(\dfrac{1}{2})^xq=1/2,n=xq=1/2, n=x


E(X2)=x=1x2(12)x=1/2(11/2)2+2(1/2)2(11/2)3=6E(X^2)=\displaystyle\sum_{x=1}^{\infin}x^2(\dfrac{1}{2})^x=\dfrac{1/2}{(1-1/2)^2}+\dfrac{2(1/2)^2}{(1-1/2)^3}=6


Var(X)=E(X2)(E(X2))2=6(2)2=2Var(X)=E(X^2)-(E(X^2))^2=6-(2)^2=2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS