Question #270913

Let the joint probability functions of X and Y be

f(x,y) = 2(x + y - 3xy2) , if 0 < x < 1, 0 < y < 1

0 , Otherwise

Find (i) Marginal probability density function of X and Y

(ii) Conditionally density functions


1
Expert's answer
2021-11-24T18:32:31-0500

(i)


fX(x)=f(x,y)dy=012(x+y3xy2)dyf_X(x)=\displaystyle\int_{-\infin}^{\infin}f(x, y)dy=\displaystyle\int_{0}^{1} 2(x + y - 3xy^2)dy

=2[xy+y22xy3]10=2x+12x=1=2[xy+\dfrac{y^2}{2}-xy^3]\begin{matrix} 1 \\ 0 \end{matrix}=2x+1-2x=1

fX(x)={10<x<10otherwisef_X(x)=\begin{cases} 1 & 0<x<1\\ 0 & otherwise \end{cases}



fY(y)=f(x,y)dx=012(x+y3xy2)dxf_Y(y)=\displaystyle\int_{-\infin}^{\infin}f(x, y)dx=\displaystyle\int_{0}^{1} 2(x + y - 3xy^2)dx

=2[x22+xy3x2y22]10=1+2y3y2=2[\dfrac{x^2}{2}+xy-\dfrac{3x^2y^2}{2}]\begin{matrix} 1 \\ 0 \end{matrix}=1+2y-3y^2

fY(y)={1+2y3y20<y<10otherwisef_Y(y)=\begin{cases} 1+2y-3y^2 & 0<y<1\\ 0 & otherwise \end{cases}

(ii)

The conditional probability density function of YY given that X=xX = x is


fYX=f(x,y)fX(x)=2(x+y3xy2)1f_{Y|X}=\dfrac{f(x, y)}{f_X(x)}=\dfrac{2(x + y - 3xy^2)}{1}

=2(x+y3xy2),0<x<1,0<y<1=2(x + y - 3xy^2),0 < x < 1, 0 < y < 1

The conditional probability density function of XX given that Y=yY=y is


fXY=f(x,y)fY(y)=2(x+y3xy2)1+2y3y2,f_{X|Y}=\dfrac{f(x, y)}{f_Y(y)}=\dfrac{2(x + y - 3xy^2)}{1+2y-3y^2} ,

0<x<1,0<y<10 < x < 1, 0 < y < 1

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS