Question #269153

The mean weight (in kg) for 8 adults males are given as follows: 70 72 65 80 75 76 68 78 Construct a 90% confidence interval estimate for the mean weight for all adult males.  


1
Expert's answer
2021-11-22T19:39:23-0500
xˉ=70+72+65+80+75+76+68+788=73\bar{x}=\dfrac{70+ 72 +65+ 80+ 75 +76+ 68+78}{8}=73

s2=181((7073)2+(7273)2+(6573)2s^2=\dfrac{1}{8-1}((70-73)^2+(72-73)^2+(65-73)^2

+(8073)2+(7573)2+(7673)2+(80-73)^2+(75-73)^2+(76-73)^2

+(6873)2+(7873)2)=1867+(68-73)^2+(78-73)^2)=\dfrac{186}{7}

s=s2=18675.154748s=\sqrt{s^2}=\sqrt{\dfrac{186}{7}}\approx5.154748

The critical value for α=0.1\alpha = 0.1 and df=n1=7df = n-1 = 7 degrees of freedom istc=z1α/2;n1=1.894577.t_c = z_{1-\alpha/2; n-1} = 1.894577.

The corresponding confidence interval is computed as shown below:


CI=(xˉtc×sn,xˉ+tc×sn)CI=(\bar{x}-t_c\times\dfrac{s}{\sqrt{n}}, \bar{x}+t_c\times\dfrac{s}{\sqrt{n}})

=(731.894577×5.1547488,=(73-1.894577\times\dfrac{5.154748}{\sqrt{8}},

73+1.894577×5.1547488)73+1.894577\times\dfrac{5.154748}{\sqrt{8}})

=(69.547,76.453)=(69.547, 76.453)

Therefore, based on the data provided, the 90% confidence interval for the population mean is 69.547<μ<76.453,69.547 < \mu < 76.453, which indicates that we are 90% confident that the true population mean μ\mu is contained by the interval (69.547,76.453).(69.547, 76.453).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS