a)
X Y X Y X 2 Y 2 21 4 84 441 16 15 8 120 225 64 22 3 66 484 9 22 4 88 484 16 21 2 42 441 4 25 3 75 625 9 30 1 30 900 1 18 5 90 324 25 24 6 144 576 36 S u m = 198 36 739 4500 180 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c:c}
& X & Y & XY & X^2 & Y^2\\
\hline
& 21 & 4 & 84 & 441 & 16\\
& 15 & 8 & 120 & 225 & 64\\
& 22 & 3 & 66 & 484 & 9\\
& 22 & 4 & 88 & 484 & 16\\
& 21 & 2 & 42 & 441 & 4\\
& 25 & 3 & 75 & 625 & 9\\
& 30 & 1 & 30 & 900 & 1\\
& 18 & 5 & 90 & 324 & 25\\
& 24 & 6 & 144 & 576 & 36\\
Sum= & 198 & 36 & 739 & 4500 & 180\\
\end{array} S u m = X 21 15 22 22 21 25 30 18 24 198 Y 4 8 3 4 2 3 1 5 6 36 X Y 84 120 66 88 42 75 30 90 144 739 X 2 441 225 484 484 441 625 900 324 576 4500 Y 2 16 64 9 16 4 9 1 25 36 180 ∑ i X i = 198 , ∑ i Y i = 36 \sum_iX_i=198, \sum_iY_i=36 i ∑ X i = 198 , i ∑ Y i = 36
∑ i X i Y i = 739 , ∑ i X i 2 = 4500 , ∑ i Y i 2 = 180 \sum_iX_iY_i=739,\sum_iX_i^2=4500, \sum_iY_i^2=180 i ∑ X i Y i = 739 , i ∑ X i 2 = 4500 , i ∑ Y i 2 = 180 X ˉ = 1 n ∑ i X i = 198 9 = 22 \bar{X}=\dfrac{1}{n}\sum_iX_i=\dfrac{198}{9}=22 X ˉ = n 1 i ∑ X i = 9 198 = 22
Y ˉ = 1 n ∑ i Y i = 36 9 = 4 \bar{Y}=\dfrac{1}{n}\sum_iY_i=\dfrac{36}{9}=4 Y ˉ = n 1 i ∑ Y i = 9 36 = 4
S S X X = ∑ i X i 2 − 1 n ( ∑ i X i ) 2 = 739 − ( 198 ) 2 9 SS_{XX}=\sum_iX_i^2-\dfrac{1}{n}(\sum_iX_i)^2=739-\dfrac{(198)^2}{9} S S XX = i ∑ X i 2 − n 1 ( i ∑ X i ) 2 = 739 − 9 ( 198 ) 2
= 144 =144 = 144
S S Y Y = ∑ i Y i 2 − 1 n ( ∑ i Y i ) 2 = 180 − ( 36 ) 2 9 SS_{YY}=\sum_iY_i^2-\dfrac{1}{n}(\sum_iY_i)^2=180-\dfrac{(36)^2}{9} S S YY = i ∑ Y i 2 − n 1 ( i ∑ Y i ) 2 = 180 − 9 ( 36 ) 2
= 36 =36 = 36
S S X Y = ∑ i X i Y i − 1 n ( ∑ i X i ) ( ∑ i Y i ) SS_{XY}=\sum_iX_iY_i-\dfrac{1}{n}(\sum_iX_i)(\sum_iY_i) S S X Y = i ∑ X i Y i − n 1 ( i ∑ X i ) ( i ∑ Y i )
= 739 − 198 ( 36 ) 9 = − 53 =739-\dfrac{198(36)}{9}=-53 = 739 − 9 198 ( 36 ) = − 53
m = s l o p e = S S X Y S S X X m=slope=\dfrac{SS_{XY}}{SS_{XX}} m = s l o p e = S S XX S S X Y
= − 53 144 = − 0.368056 =\dfrac{-53}{144}=-0.368056 = 144 − 53 = − 0.368056
n = Y ˉ − m X ˉ n=\bar{Y}-m\bar{X} n = Y ˉ − m X ˉ
= 4 − ( − 0.368056 ) ( 22 ) =4-(-0.368056)(22) = 4 − ( − 0.368056 ) ( 22 )
= 12.097232 =12.097232 = 12.097232 Therefore, we find that the regression equation is:
Y = 12.097232 − 0.368056 X Y=12.097232-0.368056X Y = 12.097232 − 0.368056 X
b)
Y = 12.097232 − 0.368056 ( 27 ) = 2 Y=12.097232-0.368056(27)=2 Y = 12.097232 − 0.368056 ( 27 ) = 2 The number of children at age 27 is 2.
c) Correlation coefficient:
r = S S X Y S S X X S S Y Y = − 53 144 36 r=\dfrac{SS_{XY}}{\sqrt{SS_{XX}}\sqrt{SS_{YY}}}=\dfrac{-53}{\sqrt{144}\sqrt{36}} r = S S XX S S YY S S X Y = 144 36 − 53
= − 0.736111 =-0.736111 = − 0.736111
Negative strong correlation.
r 2 = ( S S X Y ) 2 S S X X S S Y Y = ( − 53 ) 2 144 ( 36 ) r^2=\dfrac{(SS_{XY})^2}{SS_{XX}SS_{YY}}=\dfrac{(-53)^2}{144(36)} r 2 = S S XX S S YY ( S S X Y ) 2 = 144 ( 36 ) ( − 53 ) 2
= 0.541860 =0.541860 = 0.541860 54.186% of the data fit the regression model.
Comments