Question #267306

A sociologist wants to know whether the number of children in the family is linearly dependent on the age of the mother at her wedding. He interviewed 9 housewives and the results are shown below.


Age at wedding (X)


21


15


22


22


21


25


30


18


24


No. of children (Y)


4


8


3


4


2


3


1


5


6


Find the following:


a.) Estimate the regrision equation


b.) Estimate the number of children at age 27


c.) Compute the sample correlation coefficient r and the sample coefficient of determination r² and interpret the result.


1
Expert's answer
2021-11-17T17:41:32-0500

a)


XYXYX2Y22148444116158120225642236648492248848416212424414253756259301309001185903242524614457636Sum=198367394500180\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} & X & Y & XY & X^2 & Y^2\\ \hline & 21 & 4 & 84 & 441 & 16\\ & 15 & 8 & 120 & 225 & 64\\ & 22 & 3 & 66 & 484 & 9\\ & 22 & 4 & 88 & 484 & 16\\ & 21 & 2 & 42 & 441 & 4\\ & 25 & 3 & 75 & 625 & 9\\ & 30 & 1 & 30 & 900 & 1\\ & 18 & 5 & 90 & 324 & 25\\ & 24 & 6 & 144 & 576 & 36\\ Sum= & 198 & 36 & 739 & 4500 & 180\\ \end{array}iXi=198,iYi=36\sum_iX_i=198, \sum_iY_i=36

iXiYi=739,iXi2=4500,iYi2=180\sum_iX_iY_i=739,\sum_iX_i^2=4500, \sum_iY_i^2=180Xˉ=1niXi=1989=22\bar{X}=\dfrac{1}{n}\sum_iX_i=\dfrac{198}{9}=22

Yˉ=1niYi=369=4\bar{Y}=\dfrac{1}{n}\sum_iY_i=\dfrac{36}{9}=4

SSXX=iXi21n(iXi)2=739(198)29SS_{XX}=\sum_iX_i^2-\dfrac{1}{n}(\sum_iX_i)^2=739-\dfrac{(198)^2}{9}

=144=144

SSYY=iYi21n(iYi)2=180(36)29SS_{YY}=\sum_iY_i^2-\dfrac{1}{n}(\sum_iY_i)^2=180-\dfrac{(36)^2}{9}

=36=36

SSXY=iXiYi1n(iXi)(iYi)SS_{XY}=\sum_iX_iY_i-\dfrac{1}{n}(\sum_iX_i)(\sum_iY_i)

=739198(36)9=53=739-\dfrac{198(36)}{9}=-53

m=slope=SSXYSSXXm=slope=\dfrac{SS_{XY}}{SS_{XX}}

=53144=0.368056=\dfrac{-53}{144}=-0.368056

n=YˉmXˉn=\bar{Y}-m\bar{X}

=4(0.368056)(22)=4-(-0.368056)(22)

=12.097232=12.097232

Therefore, we find that the regression equation is:


Y=12.0972320.368056XY=12.097232-0.368056X


b)


Y=12.0972320.368056(27)=2Y=12.097232-0.368056(27)=2

The number of children at age 27 is 2.



c) Correlation coefficient:


r=SSXYSSXXSSYY=5314436r=\dfrac{SS_{XY}}{\sqrt{SS_{XX}}\sqrt{SS_{YY}}}=\dfrac{-53}{\sqrt{144}\sqrt{36}}

=0.736111=-0.736111


Negative strong correlation.

r2=(SSXY)2SSXXSSYY=(53)2144(36)r^2=\dfrac{(SS_{XY})^2}{SS_{XX}SS_{YY}}=\dfrac{(-53)^2}{144(36)}

=0.541860=0.541860

54.186% of the data fit the regression model.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS