Question #266807

1.   A random sample of 16 observations is to be drawn from a normal distribution having mean 11 and standard deviation 3.  Let  denote the sample mean.  Find, correct to three decimal places

(i)         The probability that  will have a value between 9.2 and 12.2

(ii)       The value of c for which 



1
Expert's answer
2021-11-19T10:55:42-0500

Solution:

(a) Given that,

mean =μ=11=\mu=11

standard deviation =σ=3=\sigma=3

n=16μxˉ=11σxˉ=σ/n=3/4=0.75P(9.2<xˉ<12.2)=P[(9.211)/0.75<(xˉμxˉ)/σxˉ<(12.211)/0.75)]=P(2.4<Z<1.6)=P(Z<1.6)P(Z<2.4)n=16 \\\mu_{\bar{x}}=11 \\\sigma_{\bar{x}}=\sigma / \sqrt n=3 / 4=0.75 \\ \left.\mathrm{P}(9.2<\bar{x}<12.2)=\mathrm{P}\left[(9.2-11) / 0.75<\left(\bar{x}-\mu_{\bar{x}}\right) / \sigma_{\bar{x}}<(12.2-11) / 0.75\right)\right] \\=\mathrm{P}(-2.4<Z<1.6) \\=\mathrm{P}(Z<1.6)-\mathrm{P}(Z<-2.4)

Using z table

=0.9452-0.0082

probabilty =0.9370

(b) To find The value of c for which P(xˉ<c)=0.03P(\bar{x}<c)=0.03.

P(xˉ<c)=0.03P(\bar{x}<c)=0.03

Using standard normal table,

P(Z<z)=0.03=P(Z<1.88)=0.03\begin{aligned} &P(Z<z)=0.03 \\ &=P(Z<-1.88)=0.03 \end{aligned}

z = -1.88 Using standard normal z table,

Using z-score formula

xˉ=z×σxˉ+μxˉxˉ=1.88×0.75+11xˉ=9.59\begin{aligned} &\bar{x}=\mathrm{z} \times \sigma_{\bar{x}}{+} \mu_{\bar{x}} \\ &\bar{x}=-1.88 \times 0.75+11 \\ &\bar{x}=9.59 \end{aligned}

So, the value of c =9.59


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS