Question #266474

Given a population consists of three numbers (2,5,9). Consider all possible samples of size 2 which can be drawn from the population. Find the standard deviation of the sampling distribution of the sample means.


1
Expert's answer
2021-11-16T14:15:09-0500

a.

 We have population values 2,5,92,5,9 population size N=3N=3

μ=2+5+93=163\mu=\dfrac{2+5+9}{3}=\dfrac{16}{3}σ2=13((216/3)2+(516/3)2+(916/3)2\sigma^2=\dfrac{1}{3}((2-16/3)^2+(5-16/3)^2+(9-16/3)^2

=749=\dfrac{74}{9}




σ=σ2=749=743\sigma=\sqrt{\sigma^2}=\sqrt{\dfrac{74}{9}}=\dfrac{\sqrt{74}}{3}


We have population values 2,5,92,5,9 population size N=3N=3 and sample size n=2.n=2. Thus, the number of possible samples which can be drawn without replacement is



(Nn)=(32)=3\dbinom{N}{n}=\dbinom{3}{2}=3SampleSampleSample meanNo.values(Xˉ)12,57/222,911/235,97\def\arraystretch{1.5} \begin{array}{c:c:c} Sample & Sample & Sample \ mean \\ No. & values & (\bar{X}) \\ \hline 1 & 2,5 & 7/2 \\ \hdashline 2 & 2,9 & 11/2 \\ \hdashline 3 & 5,9 & 7 \\ \hline \end{array}

The sampling distribution of the sample means.



Xˉff(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)7/211/37/649/1211/211/311/6121/12711/37/349/3Total3116/3183/6\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} & \bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline & 7/2 & 1 & 1/3 & 7/6 & 49/12 \\ \hdashline & 11/2 & 1 & 1/3 & 11/6 & 121/12 \\ \hdashline & 7 & 1 & 1/3 & 7/3 & 49/3 \\ \hdashline Total & & 3 & 1 & 16/3 & 183/6 \\ \hline \end{array}




E(Xˉ)=Xˉf(Xˉ)=163E(\bar{X})=\sum\bar{X}f(\bar{X})=\dfrac{16}{3}


The mean of the sampling distribution of the sample means is equal to the the mean of the population.


E(Xˉ)=μXˉ=163=μE(\bar{X})=\mu_{\bar{X}}=\dfrac{16}{3}=\mu




Var(Xˉ)=Xˉ2f(Xˉ)(Xˉf(Xˉ))2Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2




=1836(163)2=3718=\dfrac{183}{6}-(\dfrac{16}{3})^2=\dfrac{37}{18}




σXˉ=Var(Xˉ)=3718=746\sigma_{\bar{X}}=\sqrt{Var(\bar{X})}=\sqrt{\dfrac{37}{18}}=\dfrac{\sqrt{74}}{6}

Verification:


Var(Xˉ)=σ2n(NnN1)=7492(3231)Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{\dfrac{74}{9}}{2}(\dfrac{3-2}{3-1})




=3718,True=\dfrac{37}{18}, TrueXˉN(163,3718)\bar{X}\sim N(\dfrac{16}{3}, \dfrac{37}{18})


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS