Question #266335


Find x2 in the set of given below

x 12 14 10 12 14 15 12 11 11 10

y 45 60 25 25 70 45 50 50 60 70


1
Expert's answer
2021-11-16T13:51:47-0500
XYXYX2Y212455401442025146084019636001025250.8100625122530014462514709801964900154567522520251250600144250011505501212500116066012136001070700.61004900Sum=1215006095149127300\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} & X & Y & XY & X^2 & Y^2\\ \hline & 12 & 45 & 540 & 144 & 2025\\ & 14 & 60 & 840 & 196 & 3600\\ & 10 & 25 & 250.8 & 100 & 625\\ & 12 & 25 & 300 & 144 & 625\\ & 14 & 70 & 980 & 196 & 4900\\ & 15 & 45 & 675 & 225 & 2025\\ & 12 & 50 & 600 & 144 & 2500\\ & 11 & 50 & 550 & 121 & 2500\\ & 11 & 60 & 660 & 121 & 3600\\ & 10 & 70 & 700.6 & 100 & 4900\\ Sum= & 121 & 500 & 6095 & 1491 & 27300\\ \end{array}iXi=121,iYi=500\sum_iX_i=121, \sum_iY_i=500

iXiYi=6095,iXi=1491,iYi=27300\sum_iX_iY_i=6095,\sum_iX_i=1491, \sum_iY_i=27300


Xˉ=1niXi=12110=12.1\bar{X}=\dfrac{1}{n}\sum_iX_i=\dfrac{121}{10}=12.1

Yˉ=1niYi=50010=50\bar{Y}=\dfrac{1}{n}\sum_iY_i=\dfrac{500}{10}=50

SSXX=iXi21n(iXi)2=1491(121)210SS_{XX}=\sum_iX_i^2-\dfrac{1}{n}(\sum_iX_i)^2=1491-\dfrac{(121)^2}{10}

=26.9=26.9

SSYY=iYi21n(iYi)2=27300(500)210SS_{YY}=\sum_iY_i^2-\dfrac{1}{n}(\sum_iY_i)^2=27300-\dfrac{(500)^2}{10}

=2300=2300

SSXY=iXiYi1n(iXi)(iYi)SS_{XY}=\sum_iX_iY_i-\dfrac{1}{n}(\sum_iX_i)(\sum_iY_i)

=6095121(500)10=45=6095-\dfrac{121(500)}{10}=45

m=slope=SSXYSSXXm=slope=\dfrac{SS_{XY}}{SS_{XX}}

=4526.9=1.672862=\dfrac{45}{26.9}=1.672862

n=YˉmXˉn=\bar{Y}-m\bar{X}

=501.672862(12.1)=50-1.672862(12.1)

=29.758364=29.758364

Therefore, we find that the regression equation is:


Y=29.758364+1.672862XY=29.758364+1.672862X



Correlation coefficient:


r=SSXYSSXXSSYY=4526.92300r=\dfrac{SS_{XY}}{\sqrt{SS_{XX}}\sqrt{SS_{YY}}}=\dfrac{45}{\sqrt{26.9}\sqrt{2300}}

=0.180914=0.180914


No correlation.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS