Find the M.D. & variance of the following distribution. x 2 3 4 5 6 7 8 9 10 f 1 1 2 4 4 3 7 5 3
Below is a summary of the data given above in order to find the variance and the mean deviation.
x f fx fx2
2 1 2 4
3 1 3 9
4 2 8 32
5 4 20 100
6 4 24 144
7 3 21 147
8 7 56 448
9 5 45 405
10 3 30 300
The mean is given by,
"\\bar{x}=\\sum(fx)\/\\sum(f)=209\/30=6.966667"
To find the mean deviation, let us first make the summary below.
"x" "|x_i-\\bar{x}|" "f" "f|x-\\bar{x}|"
2 4.96667 1 4.96667
3 3.966667 1 3.966667
4 2.96667 2 5.93333
5 1.966667 4 7.86667
6 0.966667 4 3.86667
7 0.03333 3 0.1
8 1.03333 7 7.23333
9 2.03333 5 10.16667
10 3.03333 3 9.1
Now, the mean deviation is given as,
"M.D=\\displaystyle\\sum^9_{i-1}f|x_i-\\bar{x}|\/(\\sum(f))"
"M.D=53.2\/30=1.773333"
The variance is given by the formula,
"variance=(\\sum(fx^2)-(\\sum(fx))^2\/\\sum(f))\/(\\sum(f)-1)"
"variance=(1589-(209^2\/30))\/(30-1)=132.9667\/29=4.585057"
Therefore, the M.D and variance for the distribution are 1.733333 and 4.585057 respectively.
Comments
Leave a comment