Answer to Question #262912 in Statistics and Probability for Zumuto

Question #262912

Online Store Monthly E- Commerce sales (in 1000s)Online Advertising (1000s)13681.7023401.5036652.8049545.0053311.3065562.2073761.30




1
Expert's answer
2021-11-09T11:37:53-0500
OnlineMonthly EOnline AdvertisingStorecommerse SalesDollars (in 1000s)(1000s)13681.723401.536652.84954553311.365562.273761.3\def\arraystretch{1.5} \begin{array}{c:c:c} Online & Monthly\ E- & Online\ Advertising \\ Store & commerse\ Sales & Dollars \\ & \ (in\ 1000s) & (1000s)\\ \hline 1 & 368 & 1.7\\ 2 & 340 & 1.5\\ 3 & 665 & 2.8\\ 4 & 954 & 5\\ 5 & 331 & 1.3\\ 6 & 556 & 2.2\\ 7 & 376 & 1.3\\ \end{array}

a) Online Advertising Dollars is independent variable (X).(X).

Monthly E-commerse Sales is dependent variable (Y).(Y).


Xˉ=1niXi=15.87=2.257143\bar{X}=\dfrac{1}{n}\sum_iX_i=\dfrac{15.8}{7}=2.257143

Yˉ=1niYi=35907=512.857143\bar{Y}=\dfrac{1}{n}\sum_iY_i=\dfrac{3590}{7}=512.857143

SSXX=i(XiXˉ)2=10.537143SS_{XX}=\sum_i(X_i-\bar{X})^2=10.537143

SSYY=i(YiYˉ)2=322280.857143SS_{YY}=\sum_i(Y_i-\bar{Y})^2=322280.857143

SSXY=i(XiXˉ)(YiYˉ)=1806.757143SS_{XY}=\sum_i(X_i-\bar{X})(Y_i-\bar{Y})=1806.757143

m=slope=SSXYSSXX=1806.75714310.537143=171.465564m=slope=\dfrac{SS_{XY}}{SS_{XX}}=\dfrac{1806.757143}{10.537143}=171.465564

n=YˉmXˉn=\bar{Y}-m\bar{X}

=512.857143171.465564(2.257143)=512.857143-171.465564(2.257143)

=125.834870=125.834870

Therefore, we find that the regression equation is:


Y=125.834870+171.465564XY=125.834870+171.465564X



b) Correlation coefficient:


r=SSXYSSXXSSYYr=\dfrac{SS_{XY}}{\sqrt{SS_{XX}}\sqrt{SS_{YY}}}

=1806.75714310.537143322280.857143=\dfrac{1806.757143}{\sqrt{10.537143}\sqrt{322280.857143}}

=0.980440=0.980440

We have strong positive correlation.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment