Question #262819

2.3 of 60 new entrants in a are given university found to have a mean height of 68.60 inches and 50 seniors, a mean height of 69.51 inches. Is the evidence conclusive that the mean height of seniors is greater then that of the new entrants? Assume the s.d. of the height to be 2.48 inches?

1
Expert's answer
2021-11-08T21:13:43-0500

The following null and alternative hypotheses need to be tested:

H0:μ1μ2H_0:\mu_1\leq\mu_2

H1:μ1>μ2H_1:\mu_1>\mu_2

This corresponds to a right-tailed test, and a z-test for two means, with known population standard deviations will be used.

Based on the information provided, the significance level is α=0.05,\alpha = 0.05, and the critical value for a right-tailed test is zc=1.6449.z_c = 1.6449.

The rejection region for this right-tailed test is R={z:z>1.645}.R = \{z: z > 1.645\}.

The z-statistic is computed as follows:


z=xˉ1xˉ2σ12n1+σ22n2z=\dfrac{\bar{x}_1-\bar{x}_2}{\sqrt{\dfrac{\sigma_1^2}{n_1}+\dfrac{\sigma_2^2}{n_2}}}

=69.5168.602.48250+2.48260=1.9163=\dfrac{69.51-68.60}{\sqrt{\dfrac{2.48^2}{50}+\dfrac{2.48^2}{60}}}=1.9163

Since it is observed that z=1.9163>1..6449=zc,z = 1.9163 >1..6449= z_c , it is then concluded that the null hypothesis is rejected.

Using the P-value approach: The p-value is p=P(z>1.9163)=0.027666,p=P(z>1.9163)=0.027666, and since p=0.027666<0.05=α,p = 0.027666 < 0.05=\alpha, it is concluded that the null hypothesis is rejected.

Therefore, there is enough evidence to claim that the population mean μ1\mu_1 is greater than μ2,\mu_2, at the α=0.05\alpha = 0.05 significance level.

Therefore, there is enough evidence to claim that the mean height of seniors is greater then that of the new entrants, at the α=0.05\alpha = 0.05 significance level.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS