Question #257559

The number of customers arriving per hour at a certain automobile service facility is assumed to follow a Poisson distribution with mean λ=7.

​(a) Compute the probability that more than 9 customers will arrive in a 2​-hour period.

​(b) What is the mean number of arrivals during a 2​-hour ​period?


1
Expert's answer
2021-10-28T07:02:14-0400

Let X=X= the number of customers arriving per period tt : XPo(λt).X\sim Po(\lambda t).

(a) Given λ=7,t=2 h\lambda=7, t=2\ h


λt=7(2)=14\lambda t=7(2)=14


P(X>9)=1P(X9)P(X>9)=1-P(X\leq9)

=1P(X=0)P(X=1)P(X=2)=1-P(X=0)-P(X=1)-P(X=2)

P(X=3)P(X=4)P(X=5)-P(X=3)-P(X=4)-P(X=5)

P(X=6)P(X=7)P(X=8)-P(X=6)-P(X=7)-P(X=8)

P(X=9)=1e141400!e141411!-P(X=9)=1-\dfrac{e^{-14}\cdot14^0}{0!}-\dfrac{e^{-14}\cdot14^1}{1!}

e141422!e141433!e141444!-\dfrac{e^{-14}\cdot14^2}{2!}-\dfrac{e^{-14}\cdot14^3}{3!}-\dfrac{e^{-14}\cdot14^4}{4!}

e141455!e141466!e141477!-\dfrac{e^{-14}\cdot14^5}{5!}-\dfrac{e^{-14}\cdot14^6}{6!}-\dfrac{e^{-14}\cdot14^7}{7!}

e141488!e141499!=0.89060063-\dfrac{e^{-14}\cdot14^8}{8!}-\dfrac{e^{-14}\cdot14^9}{9!}=0.89060063

(b)


mean=λt=7(2)=14mean=\lambda t=7(2)=14

The mean number of arrivals during a 2​-hour ​period is 14.14.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS