The number of customers arriving per hour at a certain automobile service facility is assumed to follow a Poisson distribution with mean λ=7.
(a) Compute the probability that more than 9 customers will arrive in a 2-hour period.
(b) What is the mean number of arrivals during a 2-hour period?
Let "X=" the number of customers arriving per period "t" : "X\\sim Po(\\lambda t)."
(a) Given "\\lambda=7, t=2\\ h"
"\\lambda t=7(2)=14"
"=1-P(X=0)-P(X=1)-P(X=2)"
"-P(X=3)-P(X=4)-P(X=5)"
"-P(X=6)-P(X=7)-P(X=8)"
"-P(X=9)=1-\\dfrac{e^{-14}\\cdot14^0}{0!}-\\dfrac{e^{-14}\\cdot14^1}{1!}"
"-\\dfrac{e^{-14}\\cdot14^2}{2!}-\\dfrac{e^{-14}\\cdot14^3}{3!}-\\dfrac{e^{-14}\\cdot14^4}{4!}"
"-\\dfrac{e^{-14}\\cdot14^5}{5!}-\\dfrac{e^{-14}\\cdot14^6}{6!}-\\dfrac{e^{-14}\\cdot14^7}{7!}"
"-\\dfrac{e^{-14}\\cdot14^8}{8!}-\\dfrac{e^{-14}\\cdot14^9}{9!}=0.89060063"
(b)
The mean number of arrivals during a 2-hour period is "14."
Comments
Leave a comment