Question #256898
1. Consider all samples of size 4 from this population without replacement: 6 8 10 12 13 What is the mean and standard deviation of the Sampling Distribution? 2. Given the population 1, 3, 4, 6, and 8. Suppose samples of size 3 with replacement were drawn from this population. What is the mean and standard deviation of the Sampling Distribution? 3. A random sample of n=100 measurements is obtained from a population of N=120, with
1
Expert's answer
2021-10-27T10:21:20-0400

1.

 We have population values 6,8,10,12,13,6,8,10,12,13, population size N=5N=5 and sample size n=4.n=4. Thus, the number of possible samples which can be drawn without replacement is



(Nn)=(54)=5\dbinom{N}{n}=\dbinom{5}{4}=5SampleSampleSample meanNo.values(Xˉ)16,8,10,12926,8,10,139.2536,8,12,139.7546,10,12,1310.2558,10,12,1310.75\def\arraystretch{1.5} \begin{array}{c:c:c} Sample & Sample & Sample \ mean \\ No. & values & (\bar{X}) \\ \hline 1 & 6,8,10,12 & 9 \\ \hdashline 2 & 6,8,10,13 & 9.25 \\ \hdashline 3 & 6,8,12,13 & 9.75 \\ \hdashline 4 & 6,10,12,13 & 10.25 \\ \hdashline 5 & 8,10,12,13 & 10.75 \\ \hline \end{array}

The sampling distribution of the sample means.



Xˉff(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)910.21.816.29.2510.21.8517.11259.7510.21.9519.012510.2510.22.0521.012510.7510.22.1523.1125Total519.896.45\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} & \bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline & 9 & 1 & 0.2 & 1.8 & 16.2 \\ \hdashline & 9.25 & 1& 0.2 & 1.85 & 17.1125 \\ \hdashline & 9.75 & 1& 0.2 & 1.95 & 19.0125 \\ \hdashline & 10.25 & 1& 0.2 & 2.05 & 21.0125 \\ \hdashline & 10.75 & 1 & 0.2 & 2.15 & 23.1125 \\ \hdashline Total & & 5 & 1 & 9.8 & 96.45 \\ \hline \end{array}




E(Xˉ)=Xˉf(Xˉ)=9.8E(\bar{X})=\sum\bar{X}f(\bar{X})=9.8




μ=6+8+10+12+135=9.8\mu=\dfrac{6+8+10+12+13}{5}=9.8

The mean of the sampling distribution of the sample means is equal to the

the mean of the population.



E(Xˉ)=μXˉ=9.8=μE(\bar{X})=\mu_{\bar{X}}=9.8=\mu




Var(Xˉ)=Xˉ2f(Xˉ)(Xˉf(Xˉ))2Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2




=96.45(9.8)2=0.41=96.45-(9.8)^2=0.41




σXˉ=Var(Xˉ)=0.410.6403\sigma_{\bar{X}}=\sqrt{Var(\bar{X})}=\sqrt{0.41}\approx0.6403

Verification:


σ2=15((69.8)2+(89.8)2+(109.8)2\sigma^2=\dfrac{1}{5}((6-9.8)^2+(8-9.8)^2+(10-9.8)^2

+(129.8)2+(139.8)2)=6.56+(12-9.8)^2+(13-9.8)^2)=6.56


Var(Xˉ)=σ2n(NnN1)=6.564(5451)Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{6.56}{4}(\dfrac{5-4}{5-1})=6.5616=0.41,True=\dfrac{6.56}{16}=0.41, True


2.

 We have population values 1,3,4,6,8,1,3,4,6,8, population size N=5N=5 and sample size n=3.n=3. Thus, the number of possible samples which can be drawn with replacement is



Nn=53=125N^n=5^3=125


The mean of the sampling distribution of the sample means is equal to the the mean of the population.


μXˉ=μ=1+3+4+6+85=4.4\mu_{\bar{X}}=\mu=\dfrac{1+3+4+6+8}{5}=4.4

σ2=15((14.4)2+(34.4)2+(44.4)2\sigma^2=\dfrac{1}{5}((1-4.4)^2+(3-4.4)^2+(4-4.4)^2

+(64.4)2+(84.4)2)=5.84+(6-4.4)^2+(8-4.4)^2)=5.84

Var(Xˉ)=σXˉ2=σ2n=5.844=1.46Var(\bar{X})=\sigma^2_{\bar{X}}=\dfrac{\sigma^2}{n}=\dfrac{5.84}{4}=1.46

σXˉ=Var(Xˉ)=1.461.2083\sigma_{\bar{X}}=\sqrt{Var(\bar{X})}=\sqrt{1.46}\approx1.2083

3.

We have population size N=120N=120 and sample size n=100.n=100. 

The mean of the sampling distribution of the sample means is equal to the the mean of the population.


μXˉ=μ\mu_{\bar{X}}=\mu

Variance of the sampling distribution of the sample means is


Var(Xˉ)=σXˉ2=σ2nVar(\bar{X})=\sigma^2_{\bar{X}}=\dfrac{\sigma^2}{n}

Standard deviation of the sampling distribution of the sample means is


σXˉ=Var(Xˉ)=σn\sigma_{\bar{X}}=\sqrt{Var(\bar{X})}=\dfrac{\sigma}{\sqrt{n}}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS