Let x₁,x₂,..., Xn be a random sample from N(μ,sigma²), where u is known. Construct a (1-a) * 100% Confidence Interval for sigma².
For building confidence interval we will determine next random value:
"H = {\\frac{(x{\\scriptscriptstyle1}-u)^{2}+...+(x{\\scriptscriptstyle n}-u)^{2}} {\u03c3^{2}}}" ~ "Xi^{2}(n)", where u is μ(mean value)
Let "{(x{\\scriptscriptstyle1}-u)^{2}+...+(x{\\scriptscriptstyle n}-u)^{2}} = sum"
Since we have 1 - a confidence interval, then we have to find such m and n, that
"P(m<H<n)=1-a"
Technically, we can pick up any "m = Xi^{2}(k{\\scriptscriptstyle 1},n), n = Xi^{2}(1-k{\\scriptscriptstyle 2},n)" , where "k{\\scriptscriptstyle 1}+k{\\scriptscriptstyle 2}=a"
For example, we can put "k{\\scriptscriptstyle 1}={\\frac a 2}, k{\\scriptscriptstyle 2}=1-{\\frac a 2}" . Now we have:
"P(Xi^{2}({\\frac a 2},n)<H<Xi^{2}(1-{\\frac a 2},n))=1-a"
"P(Xi^{2}({\\frac a 2},n)<{\\frac{sum} {\u03c3^{2}}} <Xi^{2}(1-{\\frac a 2},n))=1-a"
"P({\\frac {sum} {Xi^{2}({\\frac a 2},n)}}<\u03c3^{2} <{\\frac {sum} {Xi^{2}(1-{\\frac a 2},n)}})=1-a"
The 1-a confidence interval is for "\u03c3^{2}" is "({\\frac {sum} {Xi^{2}({\\frac a 2},n)}},{\\frac {sum} {Xi^{2}(1-{\\frac a 2},n)}})"
Comments
Leave a comment