Question #256019

Let x₁,x₂,..., Xn be a random sample from N(μ,sigma²), where u is known. Construct a (1-a) * 100% Confidence Interval for sigma².


1
Expert's answer
2021-10-29T04:38:59-0400

For building confidence interval we will determine next random value:

H=(x1u)2+...+(xnu)2σ2H = {\frac{(x{\scriptscriptstyle1}-u)^{2}+...+(x{\scriptscriptstyle n}-u)^{2}} {σ^{2}}} ~ Xi2(n)Xi^{2}(n), where u is μ(mean value)

Let (x1u)2+...+(xnu)2=sum{(x{\scriptscriptstyle1}-u)^{2}+...+(x{\scriptscriptstyle n}-u)^{2}} = sum

Since we have 1 - a confidence interval, then we have to find such m and n, that

P(m<H<n)=1aP(m<H<n)=1-a

Technically, we can pick up any m=Xi2(k1,n),n=Xi2(1k2,n)m = Xi^{2}(k{\scriptscriptstyle 1},n), n = Xi^{2}(1-k{\scriptscriptstyle 2},n) , where k1+k2=ak{\scriptscriptstyle 1}+k{\scriptscriptstyle 2}=a

For example, we can put k1=a2,k2=1a2k{\scriptscriptstyle 1}={\frac a 2}, k{\scriptscriptstyle 2}=1-{\frac a 2} . Now we have:

P(Xi2(a2,n)<H<Xi2(1a2,n))=1aP(Xi^{2}({\frac a 2},n)<H<Xi^{2}(1-{\frac a 2},n))=1-a

P(Xi2(a2,n)<sumσ2<Xi2(1a2,n))=1aP(Xi^{2}({\frac a 2},n)<{\frac{sum} {σ^{2}}} <Xi^{2}(1-{\frac a 2},n))=1-a

P(sumXi2(a2,n)<σ2<sumXi2(1a2,n))=1aP({\frac {sum} {Xi^{2}({\frac a 2},n)}}<σ^{2} <{\frac {sum} {Xi^{2}(1-{\frac a 2},n)}})=1-a

The 1-a confidence interval is for σ2σ^{2} is (sumXi2(a2,n),sumXi2(1a2,n))({\frac {sum} {Xi^{2}({\frac a 2},n)}},{\frac {sum} {Xi^{2}(1-{\frac a 2},n)}})

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS