For building confidence interval we will determine next random value:
H=σ2(x1−u)2+...+(xn−u)2 ~ Xi2(n), where u is μ(mean value)
Let (x1−u)2+...+(xn−u)2=sum
Since we have 1 - a confidence interval, then we have to find such m and n, that
P(m<H<n)=1−a
Technically, we can pick up any m=Xi2(k1,n),n=Xi2(1−k2,n) , where k1+k2=a
For example, we can put k1=2a,k2=1−2a . Now we have:
P(Xi2(2a,n)<H<Xi2(1−2a,n))=1−a
P(Xi2(2a,n)<σ2sum<Xi2(1−2a,n))=1−a
P(Xi2(2a,n)sum<σ2<Xi2(1−2a,n)sum)=1−a
The 1-a confidence interval is for σ2 is (Xi2(2a,n)sum,Xi2(1−2a,n)sum)
Comments