a) Let "X=" the number of boys in a family of 5 children: "x\\sim Bin(n, p)"
Given "n=5, p=\\dfrac{1}{2}, q=1-\\dfrac{1}{2}=\\dfrac{1}{2}"
"=1-\\dbinom{5}{0}(\\dfrac{1}{2})^5(\\dfrac{1}{2})^{5-5}=\\dfrac{31}{32}"
"P(at\\ least\\ 1\\ boy\\ and \\ at\\ least\\ 1\\ girl)"
"=P(X=1)+P(X=2)+P(X=3)+P(X=4)"
"=1-P(X=0)-P(X=5)"
"=1-\\dbinom{5}{0}(\\dfrac{1}{2})^5(\\dfrac{1}{2})^{5-5}-\\dbinom{5}{5}(\\dfrac{1}{2})^0(\\dfrac{1}{2})^{5-0}"
"=\\dfrac{30}{32}=\\dfrac{15}{16}"
b)
(i)
"=[x-x^2\/2]\\begin{matrix}\n 0.5 \\\\\n 0\n\\end{matrix}=0.5-0.125=0.375"
(ii)
"=\\displaystyle\\int_{0}^{1}(1-x)dx+\\displaystyle\\int_{1}^{1.5}(2-x)dx"
"=[x-x^2\/2]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}+[2x-x^2\/2]\\begin{matrix}\n 1.5 \\\\\n 1\n\\end{matrix}"
"=1-0.5+3-1.125-2+0.5=0.875"
(iii)
(iv)
"=\\displaystyle\\int_{0.25}^{1}(1-x)dx+\\displaystyle\\int_{1}^{1.5}(2-x)dx"
"=[x-x^2\/2]\\begin{matrix}\n 1 \\\\\n 0.25\n\\end{matrix}+[2x-x^2\/2]\\begin{matrix}\n 1.5 \\\\\n 1\n\\end{matrix}"
"=0.65625"
Comments
Leave a comment