Answer to Question #255543 in Statistics and Probability for talie

Question #255543
(a) Find the probability that in a family of 5 children there will be (i) at least one boy, (ii) at least one boy and at least one girl. Assume that the probability of a male birth is 1/2. (b) Suppose a random variable X has the probability density f(x) =    x, 0 ≤ x < 1 2 − x, 1 ≤ x < 2 0, elsewhere Find (i) P(−1 < x < 0.5) (ii)P(x ≤ 1.5) (iii) P(x > 2.5) (iv) P(0.25 < x < 1.5)
1
Expert's answer
2021-10-26T11:28:46-0400

a) Let X=X= the number of boys in a family of 5 children: xBin(n,p)x\sim Bin(n, p)  

Given n=5,p=12,q=112=12n=5, p=\dfrac{1}{2}, q=1-\dfrac{1}{2}=\dfrac{1}{2}


P(at least 1 boy)=1P(X=0)P(at\ least\ 1\ boy)=1-P(X=0)

=1(50)(12)5(12)55=3132=1-\dbinom{5}{0}(\dfrac{1}{2})^5(\dfrac{1}{2})^{5-5}=\dfrac{31}{32}

P(at least 1 boy and at least 1 girl)P(at\ least\ 1\ boy\ and \ at\ least\ 1\ girl)

=P(X=1)+P(X=2)+P(X=3)+P(X=4)=P(X=1)+P(X=2)+P(X=3)+P(X=4)

=1P(X=0)P(X=5)=1-P(X=0)-P(X=5)

=1(50)(12)5(12)55(55)(12)0(12)50=1-\dbinom{5}{0}(\dfrac{1}{2})^5(\dfrac{1}{2})^{5-5}-\dbinom{5}{5}(\dfrac{1}{2})^0(\dfrac{1}{2})^{5-0}

=3032=1516=\dfrac{30}{32}=\dfrac{15}{16}

b)


f(x)={1x,0x<12x,1x<20,elsewheref(x) = \begin{cases} 1-x, &0\leq x<1 \\ 2-x, &1\leq x<2 \\ 0, & elsewhere \end{cases}

(i)


P(1<x<0.5)=10.5f(x)dx=00.5(1x)dxP(−1 < x < 0.5)=\displaystyle\int_{-1}^{0.5}f(x)dx=\displaystyle\int_{0}^{0.5}(1-x)dx

=[xx2/2]0.50=0.50.125=0.375=[x-x^2/2]\begin{matrix} 0.5 \\ 0 \end{matrix}=0.5-0.125=0.375

(ii)


P(x1.5)=1.5f(x)dxP(x\leq1.5)=\displaystyle\int_{-\infin}^{1.5}f(x)dx

=01(1x)dx+11.5(2x)dx=\displaystyle\int_{0}^{1}(1-x)dx+\displaystyle\int_{1}^{1.5}(2-x)dx

=[xx2/2]10+[2xx2/2]1.51=[x-x^2/2]\begin{matrix} 1 \\ 0 \end{matrix}+[2x-x^2/2]\begin{matrix} 1.5 \\ 1 \end{matrix}

=10.5+31.1252+0.5=0.875=1-0.5+3-1.125-2+0.5=0.875

(iii)


P(x>2.5)=1P(x>2.5)=1

(iv)


P(0.25<x<1.5)=0.251.5f(x)dxP(0.25 < x < 1.5)=\displaystyle\int_{0.25}^{1.5}f(x)dx

=0.251(1x)dx+11.5(2x)dx=\displaystyle\int_{0.25}^{1}(1-x)dx+\displaystyle\int_{1}^{1.5}(2-x)dx

=[xx2/2]10.25+[2xx2/2]1.51=[x-x^2/2]\begin{matrix} 1 \\ 0.25 \end{matrix}+[2x-x^2/2]\begin{matrix} 1.5 \\ 1 \end{matrix}




=10.50.25+0.03125+31.1252+0.5=1-0.5-0.25+0.03125+3-1.125-2+0.5

=0.65625=0.65625


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment