a) Let X = X= X = the number of boys in a family of 5 children: x ∼ B i n ( n , p ) x\sim Bin(n, p) x ∼ B in ( n , p )
Given n = 5 , p = 1 2 , q = 1 − 1 2 = 1 2 n=5, p=\dfrac{1}{2}, q=1-\dfrac{1}{2}=\dfrac{1}{2} n = 5 , p = 2 1 , q = 1 − 2 1 = 2 1
P ( a t l e a s t 1 b o y ) = 1 − P ( X = 0 ) P(at\ least\ 1\ boy)=1-P(X=0) P ( a t l e a s t 1 b oy ) = 1 − P ( X = 0 )
= 1 − ( 5 0 ) ( 1 2 ) 5 ( 1 2 ) 5 − 5 = 31 32 =1-\dbinom{5}{0}(\dfrac{1}{2})^5(\dfrac{1}{2})^{5-5}=\dfrac{31}{32} = 1 − ( 0 5 ) ( 2 1 ) 5 ( 2 1 ) 5 − 5 = 32 31
P ( a t l e a s t 1 b o y a n d a t l e a s t 1 g i r l ) P(at\ least\ 1\ boy\ and \ at\ least\ 1\ girl) P ( a t l e a s t 1 b oy an d a t l e a s t 1 g i r l )
= P ( X = 1 ) + P ( X = 2 ) + P ( X = 3 ) + P ( X = 4 ) =P(X=1)+P(X=2)+P(X=3)+P(X=4) = P ( X = 1 ) + P ( X = 2 ) + P ( X = 3 ) + P ( X = 4 )
= 1 − P ( X = 0 ) − P ( X = 5 ) =1-P(X=0)-P(X=5) = 1 − P ( X = 0 ) − P ( X = 5 )
= 1 − ( 5 0 ) ( 1 2 ) 5 ( 1 2 ) 5 − 5 − ( 5 5 ) ( 1 2 ) 0 ( 1 2 ) 5 − 0 =1-\dbinom{5}{0}(\dfrac{1}{2})^5(\dfrac{1}{2})^{5-5}-\dbinom{5}{5}(\dfrac{1}{2})^0(\dfrac{1}{2})^{5-0} = 1 − ( 0 5 ) ( 2 1 ) 5 ( 2 1 ) 5 − 5 − ( 5 5 ) ( 2 1 ) 0 ( 2 1 ) 5 − 0
= 30 32 = 15 16 =\dfrac{30}{32}=\dfrac{15}{16} = 32 30 = 16 15
b)
f ( x ) = { 1 − x , 0 ≤ x < 1 2 − x , 1 ≤ x < 2 0 , e l s e w h e r e f(x) = \begin{cases}
1-x, &0\leq x<1 \\
2-x, &1\leq x<2 \\
0, & elsewhere
\end{cases} f ( x ) = ⎩ ⎨ ⎧ 1 − x , 2 − x , 0 , 0 ≤ x < 1 1 ≤ x < 2 e l se w h ere (i)
P ( − 1 < x < 0.5 ) = ∫ − 1 0.5 f ( x ) d x = ∫ 0 0.5 ( 1 − x ) d x P(−1 < x < 0.5)=\displaystyle\int_{-1}^{0.5}f(x)dx=\displaystyle\int_{0}^{0.5}(1-x)dx P ( − 1 < x < 0.5 ) = ∫ − 1 0.5 f ( x ) d x = ∫ 0 0.5 ( 1 − x ) d x
= [ x − x 2 / 2 ] 0.5 0 = 0.5 − 0.125 = 0.375 =[x-x^2/2]\begin{matrix}
0.5 \\
0
\end{matrix}=0.5-0.125=0.375 = [ x − x 2 /2 ] 0.5 0 = 0.5 − 0.125 = 0.375 (ii)
P ( x ≤ 1.5 ) = ∫ − ∞ 1.5 f ( x ) d x P(x\leq1.5)=\displaystyle\int_{-\infin}^{1.5}f(x)dx P ( x ≤ 1.5 ) = ∫ − ∞ 1.5 f ( x ) d x
= ∫ 0 1 ( 1 − x ) d x + ∫ 1 1.5 ( 2 − x ) d x =\displaystyle\int_{0}^{1}(1-x)dx+\displaystyle\int_{1}^{1.5}(2-x)dx = ∫ 0 1 ( 1 − x ) d x + ∫ 1 1.5 ( 2 − x ) d x
= [ x − x 2 / 2 ] 1 0 + [ 2 x − x 2 / 2 ] 1.5 1 =[x-x^2/2]\begin{matrix}
1 \\
0
\end{matrix}+[2x-x^2/2]\begin{matrix}
1.5 \\
1
\end{matrix} = [ x − x 2 /2 ] 1 0 + [ 2 x − x 2 /2 ] 1.5 1
= 1 − 0.5 + 3 − 1.125 − 2 + 0.5 = 0.875 =1-0.5+3-1.125-2+0.5=0.875 = 1 − 0.5 + 3 − 1.125 − 2 + 0.5 = 0.875
(iii)
P ( x > 2.5 ) = 1 P(x>2.5)=1 P ( x > 2.5 ) = 1
(iv)
P ( 0.25 < x < 1.5 ) = ∫ 0.25 1.5 f ( x ) d x P(0.25 < x < 1.5)=\displaystyle\int_{0.25}^{1.5}f(x)dx P ( 0.25 < x < 1.5 ) = ∫ 0.25 1.5 f ( x ) d x
= ∫ 0.25 1 ( 1 − x ) d x + ∫ 1 1.5 ( 2 − x ) d x =\displaystyle\int_{0.25}^{1}(1-x)dx+\displaystyle\int_{1}^{1.5}(2-x)dx = ∫ 0.25 1 ( 1 − x ) d x + ∫ 1 1.5 ( 2 − x ) d x
= [ x − x 2 / 2 ] 1 0.25 + [ 2 x − x 2 / 2 ] 1.5 1 =[x-x^2/2]\begin{matrix}
1 \\
0.25
\end{matrix}+[2x-x^2/2]\begin{matrix}
1.5 \\
1
\end{matrix} = [ x − x 2 /2 ] 1 0.25 + [ 2 x − x 2 /2 ] 1.5 1
= 1 − 0.5 − 0.25 + 0.03125 + 3 − 1.125 − 2 + 0.5 =1-0.5-0.25+0.03125+3-1.125-2+0.5 = 1 − 0.5 − 0.25 + 0.03125 + 3 − 1.125 − 2 + 0.5
= 0.65625 =0.65625 = 0.65625
Comments
Leave a comment