Question #254435

Given the population of 5000 scores with a mean of 86 and standard deviation of 10. How many scores


1
Expert's answer
2021-10-21T13:29:10-0400

a)


P(86<X<96)=P(Z<968610)P(Z868610)P(86<X<96)=P(Z<\dfrac{96-86}{10})-P(Z\leq\dfrac{86-86}{10})

=P(Z<1)0.5=0.341345=P(Z<1)-0.5=0.341345

0.341345(5000)=1706.717070.341345(5000)=1706.7\approx1707

b)


P(96<X<106)=P(Z<1068610)P(Z968610)P(96<X<106)=P(Z<\dfrac{106-86}{10})-P(Z\leq\dfrac{96-86}{10})

=P(Z<2)P(Z1)=0.9772500.841345=P(Z<2)-P(Z\leq 1)=0.977250-0.841345

=0.135905=0.135905

0.135905(5000)=679.56800.135905(5000)=679.5\approx680

c)


0.56(5000)=28000.56(5000)=2800

2800 scores are below 56%

P(X<56)=P(Z<568610)=P(Z<3)P(X<56)=P(Z<\dfrac{56-86}{10})=P(Z<-3)

=0.001350=0.001350

0.001350(5000)=6.7570.001350(5000)=6.75\approx7

7 scores are below 56.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS