Question #254276

In a box there are 4 blue and 8 white marbles. If 2 marables are selected at random, what is the probability to see


a, marbles of the same color?


b, marbles of different color?


c, both blue marbles ?


d, both white marbles?


1
Expert's answer
2022-01-31T16:36:25-0500

There are 4+8=124+8=12 marbles.


S={BB,BW,WB,WW}S=\{BB, BW, WB, WW\}

a)


P(2 same color)=P(BB)+P(WW)P(2\ same \ color)=P(BB)+P(WW)

=412(41121)+812(81121)=1733=\dfrac{4}{12}(\dfrac{4-1}{12-1})+\dfrac{8}{12}(\dfrac{8-1}{12-1})=\dfrac{17}{33}

b)


P(2 different color)=P(BW)+P(WB)P(2\ different \ color)=P(BW)+P(WB)

=412(8121)+812(4121)=1633=\dfrac{4}{12}(\dfrac{8}{12-1})+\dfrac{8}{12}(\dfrac{4}{12-1})=\dfrac{16}{33}

=1P(2 same color)=1-P(2\ same \ color)

c)


P(BB)=412(41121)=111P(BB)=\dfrac{4}{12}(\dfrac{4-1}{12-1})=\dfrac{1}{11}

d)


P(WW)=812(81121)=1433P(WW)=\dfrac{8}{12}(\dfrac{8-1}{12-1})=\dfrac{14}{33}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS