Let X = X= X = the number os shirts sold: X ∼ P o ( λ t ) X\sim Po(\lambda t) X ∼ P o ( λ t )
i)
λ t = 5 \lambda t=5 λ t = 5
P ( X > 3 ) = 1 − P ( X ≤ 3 ) P(X>3)=1-P(X\leq3) P ( X > 3 ) = 1 − P ( X ≤ 3 )
= 1 − e − 5 ( 5 ) 0 0 ! − e − 5 ( 5 ) 1 1 ! − e − 5 ( 5 ) 2 2 ! − e − 5 ( 5 ) 3 3 ! =1-\dfrac{e^{-5}(5)^0}{0!}-\dfrac{e^{-5}(5)^1}{1!}-\dfrac{e^{-5}(5)^2}{2!}-\dfrac{e^{-5}(5)^3}{3!} = 1 − 0 ! e − 5 ( 5 ) 0 − 1 ! e − 5 ( 5 ) 1 − 2 ! e − 5 ( 5 ) 2 − 3 ! e − 5 ( 5 ) 3
= 0.73497 =0.73497 = 0.73497
ii)
λ t = 20 \lambda t=20 λ t = 20
P ( X ≤ 31 ) = 0.99191 P(X\leq31)=0.99191 P ( X ≤ 31 ) = 0.99191 Normal Approximation to Poisson Distribution
μ = λ t = 20 , σ 2 = λ t = 20 \mu=\lambda t=20, \sigma^2=\lambda t=20 μ = λ t = 20 , σ 2 = λ t = 20
P ( X ≤ 31 ) = P ( Z ≤ 31 − 20 20 ) ≈ P ( Z ≤ 2.45967 ) P(X\leq31)=P(Z\leq\dfrac{31-20}{\sqrt{20}})\approx P(Z\leq2.45967) P ( X ≤ 31 ) = P ( Z ≤ 20 31 − 20 ) ≈ P ( Z ≤ 2.45967 )
≈ 0.99305 \approx0.99305 ≈ 0.99305 iii)
λ t = 5 ( 0.9 ) = 4.5 \lambda t=5(0.9)=4.5 λ t = 5 ( 0.9 ) = 4.5
P ( 3 ≤ X ≤ 8 ) = P ( X = 3 ) + P ( X = 4 ) P(3\leq X\leq8)=P(X=3)+P(X=4) P ( 3 ≤ X ≤ 8 ) = P ( X = 3 ) + P ( X = 4 )
+ P ( X = 5 ) + P ( X = 6 ) + P ( X = 7 ) + P ( X = 8 ) +P(X=5)+P(X=6)+P(X=7)+P(X=8) + P ( X = 5 ) + P ( X = 6 ) + P ( X = 7 ) + P ( X = 8 )
= e − 4.5 ( 4.5 ) 3 3 ! + e − 4.5 ( 4.5 ) 4 4 ! + e − 4.5 ( 4.5 ) 5 5 ! =\dfrac{e^{-4.5}(4.5)^3}{3!}+\dfrac{e^{-4.5}(4.5)^4}{4!}+\dfrac{e^{-4.5}(4.5)^5}{5!} = 3 ! e − 4.5 ( 4.5 ) 3 + 4 ! e − 4.5 ( 4.5 ) 4 + 5 ! e − 4.5 ( 4.5 ) 5
+ e − 4.5 ( 4.5 ) 6 6 ! + e − 4.5 ( 4.5 ) 7 7 ! + e − 4.5 ( 4.5 ) 8 8 ! +\dfrac{e^{-4.5}(4.5)^6}{6!}+\dfrac{e^{-4.5}(4.5)^7}{7!}+\dfrac{e^{-4.5}(4.5)^8}{8!} + 6 ! e − 4.5 ( 4.5 ) 6 + 7 ! e − 4.5 ( 4.5 ) 7 + 8 ! e − 4.5 ( 4.5 ) 8
= 0.16872 + 0.18981 + 0.17083 =0.16872+0.18981+0.17083 = 0.16872 + 0.18981 + 0.17083
+ 0.12812 + 0.08236 + 0.04633 +0.12812+0.08236+0.04633 + 0.12812 + 0.08236 + 0.04633
= 0.78617 =0.78617 = 0.78617
Comments