Question #252153

A shop sells five pieces of shirt every day, from 10am to 10pm.

i) What is the probability of selling more than three shirts today?

ii) What is the probability of selling at most thirty-one shirts from Monday to

Thursday?

iii) What is the probability of selling three to eight shirts for 9 hours?


1
Expert's answer
2021-10-19T10:44:12-0400

Let X=X= the number os shirts sold: XPo(λt)X\sim Po(\lambda t)

i)

λt=5\lambda t=5


P(X>3)=1P(X3)P(X>3)=1-P(X\leq3)

=1e5(5)00!e5(5)11!e5(5)22!e5(5)33!=1-\dfrac{e^{-5}(5)^0}{0!}-\dfrac{e^{-5}(5)^1}{1!}-\dfrac{e^{-5}(5)^2}{2!}-\dfrac{e^{-5}(5)^3}{3!}

=0.73497=0.73497

ii)

λt=20\lambda t=20


P(X31)=0.99191P(X\leq31)=0.99191

Normal Approximation to Poisson Distribution

μ=λt=20,σ2=λt=20\mu=\lambda t=20, \sigma^2=\lambda t=20


P(X31)=P(Z312020)P(Z2.45967)P(X\leq31)=P(Z\leq\dfrac{31-20}{\sqrt{20}})\approx P(Z\leq2.45967)

0.99305\approx0.99305

iii)

λt=5(0.9)=4.5\lambda t=5(0.9)=4.5


P(3X8)=P(X=3)+P(X=4)P(3\leq X\leq8)=P(X=3)+P(X=4)

+P(X=5)+P(X=6)+P(X=7)+P(X=8)+P(X=5)+P(X=6)+P(X=7)+P(X=8)

=e4.5(4.5)33!+e4.5(4.5)44!+e4.5(4.5)55!=\dfrac{e^{-4.5}(4.5)^3}{3!}+\dfrac{e^{-4.5}(4.5)^4}{4!}+\dfrac{e^{-4.5}(4.5)^5}{5!}

+e4.5(4.5)66!+e4.5(4.5)77!+e4.5(4.5)88!+\dfrac{e^{-4.5}(4.5)^6}{6!}+\dfrac{e^{-4.5}(4.5)^7}{7!}+\dfrac{e^{-4.5}(4.5)^8}{8!}

=0.16872+0.18981+0.17083=0.16872+0.18981+0.17083

+0.12812+0.08236+0.04633+0.12812+0.08236+0.04633

=0.78617=0.78617




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS