I.
"variance=\\sigma^2=\\dfrac{1}{5}((8-12)^2+(10-12)^2"
"+(12-12)^2+(14-12)^2+(16-12)^2)=8"
"\\sigma=\\sqrt{\\sigma^2}=\\sqrt{8}=2\\sqrt{2}"
II. There are "\\dbinom{5}{2}=10" samples of size two which can be drawn without replacement:
III.
IV.
"+13(0.2)+14(0.1)+15(0.1)=12"
"+12^2(0.2)+13^2(0.2)+14^2(0.1)+15^2(0.1)=147"
"\\sigma_{\\bar{X}}^2=\\sum_i\\bar{X}_i^2P(\\bar{X_i})-\\mu_{\\bar{X}}^2=147-12^2=3"
"\\sigma_{\\bar{X}}=\\sqrt{\\sigma_{\\bar{X}}^2}=\\sqrt{3}"
"\\mu_{\\bar{X}}=12, \\sigma_{\\bar{X}}=\\sqrt{3}"
V.
The mean "\\mu_{\\bar{X}}" and standard deviation "\\sigma_{\\bar{X}}" of the sample mean "\\bar{X}" satisfy
"\\sigma_{\\bar{X}}=\\sqrt{3}=\\dfrac{2\\sqrt{2}}{\\sqrt{2}}\\sqrt{\\dfrac{5-2}{5-1}}=\\dfrac{\\sigma}{\\sqrt{n}}\\sqrt{\\dfrac{N-n}{N-1}}"
Comments
Leave a comment