a)
P(X1<2X2)=∫0∞∫0∞∫02x2e−(x1+x2+x3)dx1dx2dx3=
=−∫0∞∫0∞(e−(3x2+x3)−e−(x2+x3))dx2dx3=
=−∫0∞(−e−(3x2+x3)/3+e−(x2+x3))∣0∞dx3=
=−∫0∞(e−x3/3−e−x3)dx3=1−1/3=2/3
P(X1=2X2)=∫0∞∫0∞∫2x22x2e−(x1+x2+x3)dx1dx2dx3=0
mgf of X1+2X2+X3:
MX1+2X2+X3(t)=∫0∞∫0∞∫0∞e(t−1)(x1+2x2+x3)dx1dx2dx3=∞
X1, X2,X3 are independent if the joint p.d.f. is the product of the individual p.d.f.’s
We have:
fX1=fX2=fX3=−e−(x1+x2+x3)
fX1⋅fX2⋅fX3=−e−3(x1+x2+x3)=f(X1,X2,X3)
So, the variables are dependent.
Comments