Question #249598

Let X and Y have the joint pdf f(x, y) = 3x, 0 < y < x < 1, zero elsewhere. Are X and Y independent? If not, find Var(Y|x).


1
Expert's answer
2021-10-12T06:06:51-0400

f(x,y)=3x,f(x,y)=3x, 0<y<x<10\lt y \lt x\lt1

0, elsewhere0,\space elsewhere

Given the p.d.fp. d. f above, we shall determine whether XX and YY are independent using the property for testing independence given as,

E(XY)=E(X)E(Y)E(XY)=E(X)*E(Y)

Now,

E(XY)=010x(xy)f(x,y)dydxE(XY)=\int^1_0\int^x_0 (xy)*f(x,y)dydx


=010x(xy)3xdydx=\int^1_0\int^x_0(xy)*3xdydx


=010x3yx2dydx=\int^1_0\int^x_03yx^2dydx


== 013/2(y2x20x)dx\int^1_03/2*(y^2x^2|^x_0)dx


=01(3/2)x4dx=\int^1_0(3/2)*x^4dx


=(3/10x5)01=3/10=(3/10*x^5)|^1_0=3/10


E(X)=010xxf(x,y)dydxE(X) =\int^1_0\int^x_0xf(x,y)dydx


=010x3x2dydx=\int^1_0\int^x_03x^2dydx


=01(3x2y)0xdx=\int^1_0(3x^2y)|^x_0dx


=013x3dx=\int^1_03x^3dx

=(3/4x4)01=(3/4x^4)|^1_0


=3/4=3/4

E(Y)=010xyf(x,y)dydxE(Y)=\int^1_0\int^x_0y*f(x,y)dydx


=010x3xydydx=\int^1_0\int^x_03xydydx


=013/2(xy2)0xdx=\int^1_03/2(xy^2)|^x_0dx


=013/2(x3)dx=\int^1_03/2(x^3)dx


=3/8(x4)01=3/8(x^4)|^1_0


=3/8=3/8

Let us check if the condition stated above is satisfied,

3/103/43/83/10\not=3/4*3/8

Therefore, random variables XX and YY are not independent.

Since they are not independent, we move ahead to determine V(Yx)V(Y|x).

To determine this conditional variance, we need to find the conditional distribution of YxY|x given as f(Yx)f(Y|x) as follows,

f(Yx)=f(x,y)/g(x)f(Y|x)=f(x,y)/g(x) where g(x)g(x) is the marginal distribution of XX

We already have f(x,y)f(x,y), let's find g(x)g(x)

Now,

g(x)=0xf(x,y)dyg(x)=\int^x_0f(x,y)dy


=0x3xdy=\int^x_03xdy


=(3xy)0x=(3xy)|^x_0


=3x2=3x^2

Therefore, the marginal distribution of XX is given as,

g(x)=3x2, 0<x<1g(x)=3x^2,\space 0\lt x\lt 1

0, elsewhere0,\space elsewhere

Thus, f(Yx)=3x/3x2=1/x, 0<y<x<1f(Y|x)=3x/3x^2=1/x,\space 0\lt y\lt x\lt1

0, elsewhere0,\space elsewhere

Conditional variance, V(Yx)=E(Y2x)E(Yx)V(Y|x)=E(Y^2|x)-E(Y|x).

We determine the two conditional expectations as follows,

E(Yx)=0xyf(Yx)dyE(Y|x)=\int^x_0y*f(Y|x)dy


=0x(y/x)dy=\int^x_0(y/x)dy


=(y2/2x)0x=(y^2/2x)|^x_0


=x2/2x=x/2=x^2/2x=x/2


E(Y2x)=0xy2f(Yx)dyE(Y^2|x)=\int^x_0y^2*f(Y|x)dy


=0x(y2/x)dy=\int^x_0(y^2/x)dy


=(y3/3x)0x=(y^3/3x)|^x_0


=x3/3x=x2/3=x^3/3x=x^2/3

Now,

V(Yx)=x2/3(x/2)2=x2/12, 0<x<1V(Y|x)=x^2/3-(x/2)^2=x^2/12,\space 0\lt x\lt 1

0, elsewhere0,\space elsewhere


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS