I.
m e a n = μ = 54 + 55 + 59 + 63 + 64 5 = 59 mean=\mu=\dfrac{54 +55 +59+ 63 +64}{5}=59 m e an = μ = 5 54 + 55 + 59 + 63 + 64 = 59
v a r i a n c e = σ 2 = 1 5 ( ( 54 − 59 ) 2 + ( 55 − 59 ) 2 variance=\sigma^2=\dfrac{1}{5}((54-59)^2+(55-59)^2 v a r ian ce = σ 2 = 5 1 (( 54 − 59 ) 2 + ( 55 − 59 ) 2
+ ( 59 − 59 ) 2 + ( 63 − 59 ) 2 + ( 64 − 59 ) 2 ) = 16.4 +(59-59)^2+(63-59)^2+(64-59)^2)=16.4 + ( 59 − 59 ) 2 + ( 63 − 59 ) 2 + ( 64 − 59 ) 2 ) = 16.4
σ = σ 2 = 16.4 = 2 4.1 \sigma=\sqrt{\sigma^2}=\sqrt{16.4}=2\sqrt{4.1} σ = σ 2 = 16.4 = 2 4.1
II. There are 5 2 = 25 5^2=25 5 2 = 25 samples of size two which can be drawn with replacement:
S a m p l e S a m p l e m e a n ( 54 , 54 ) 54 ( 54 , 55 ) 54.5 ( 54 , 59 ) 56.5 ( 54 , 63 ) 58.5 ( 54 , 64 ) 59 ( 55 , 54 ) 54.5 ( 55 , 55 ) 55 ( 55 , 59 ) 57 ( 55 , 63 ) 59 ( 55 , 64 ) 59.5 ( 59 , 54 ) 56.5 ( 59 , 55 ) 57 ( 59 , 59 ) 59 ( 59 , 63 ) 61 ( 59 , 64 ) 61.5 ( 63 , 54 ) 58.5 ( 63 , 55 ) 59 ( 63 , 59 ) 61 ( 63 , 63 ) 63 ( 63 , 64 ) 63.5 ( 64 , 54 ) 59 ( 64 , 55 ) 59.5 ( 64 , 59 ) 61.5 ( 64 , 63 ) 63.5 ( 64 , 64 ) 64 \begin{matrix}
Sample & Sample\ mean \\
(54,54) & 54 \\
(54,55) & 54.5 \\
(54,59) & 56.5 \\
(54,63) & 58.5 \\
(54,64) & 59 \\
(55,54) & 54.5 \\
(55,55) & 55\\
(55,59) & 57 \\
(55,63) & 59 \\
(55,64) & 59.5 \\
(59,54) & 56.5 \\
(59,55) & 57 \\
(59,59) & 59 \\
(59,63) & 61 \\
(59,64) & 61.5 \\
(63,54) & 58.5 \\
(63,55) & 59\\
(63,59) & 61 \\
(63,63) & 63 \\
(63,64) & 63.5 \\
(64,54) & 59 \\
(64,55) & 59.5 \\
(64,59) & 61.5 \\
(64,63) & 63.5 \\
(64,64) & 64 \\
\end{matrix} S am pl e ( 54 , 54 ) ( 54 , 55 ) ( 54 , 59 ) ( 54 , 63 ) ( 54 , 64 ) ( 55 , 54 ) ( 55 , 55 ) ( 55 , 59 ) ( 55 , 63 ) ( 55 , 64 ) ( 59 , 54 ) ( 59 , 55 ) ( 59 , 59 ) ( 59 , 63 ) ( 59 , 64 ) ( 63 , 54 ) ( 63 , 55 ) ( 63 , 59 ) ( 63 , 63 ) ( 63 , 64 ) ( 64 , 54 ) ( 64 , 55 ) ( 64 , 59 ) ( 64 , 63 ) ( 64 , 64 ) S am pl e m e an 54 54.5 56.5 58.5 59 54.5 55 57 59 59.5 56.5 57 59 61 61.5 58.5 59 61 63 63.5 59 59.5 61.5 63.5 64
III.
X ˉ P ( X ˉ ) 54 1 / 25 54.5 2 / 25 55 1 / 25 56.5 2 / 25 57 2 / 25 58.5 2 / 25 59 5 / 25 59.5 2 / 25 61 2 / 25 61.5 2 / 25 63 1 / 25 63.5 2 / 25 64 1 / 25 \begin{matrix}
\bar{X} & P(\bar{X}) \\
54 & 1/25 \\
54.5 & 2/25 \\
55 & 1/25 \\
56.5 & 2/25 \\
57 & 2/25 \\
58.5 & 2/25 \\
59 & 5/25\\
59.5 & 2/25 \\
61 & 2/25 \\
61.5 & 2/25 \\
63 & 1/25 \\
63.5 & 2/25 \\
64 & 1/25 \\
\end{matrix} X ˉ 54 54.5 55 56.5 57 58.5 59 59.5 61 61.5 63 63.5 64 P ( X ˉ ) 1/25 2/25 1/25 2/25 2/25 2/25 5/25 2/25 2/25 2/25 1/25 2/25 1/25 IV.
μ X ˉ = 54 ( 1 25 ) + 54.5 ( 2 25 ) + 55 ( 1 25 ) + 56.5 ( 2 25 ) \mu_{\bar{X}}=54(\dfrac{1}{25})+54.5(\dfrac{2}{25})+55(\dfrac{1}{25})+56.5(\dfrac{2}{25}) μ X ˉ = 54 ( 25 1 ) + 54.5 ( 25 2 ) + 55 ( 25 1 ) + 56.5 ( 25 2 )
+ 57 ( 2 25 ) + 58.5 ( 2 25 ) + 59 ( 5 25 ) + 59.5 ( 2 25 ) +57(\dfrac{2}{25})+58.5(\dfrac{2}{25})+59(\dfrac{5}{25})+59.5(\dfrac{2}{25}) + 57 ( 25 2 ) + 58.5 ( 25 2 ) + 59 ( 25 5 ) + 59.5 ( 25 2 )
+ 61 ( 2 25 ) + 61.5 ( 2 25 ) + 63 ( 1 25 ) + 63.5 ( 2 25 ) +61(\dfrac{2}{25})+61.5(\dfrac{2}{25})+63(\dfrac{1}{25})+63.5(\dfrac{2}{25}) + 61 ( 25 2 ) + 61.5 ( 25 2 ) + 63 ( 25 1 ) + 63.5 ( 25 2 )
+ 64 ( 1 25 ) = 59 +64(\dfrac{1}{25})=59 + 64 ( 25 1 ) = 59
∑ i X ˉ i 2 P ( X i ˉ ) = 5 4 2 ( 1 25 ) + 54. 5 2 ( 2 25 ) + 5 5 2 ( 1 25 ) \sum_i\bar{X}_i^2P(\bar{X_i})=54^2(\dfrac{1}{25})+54.5^2(\dfrac{2}{25})+55^2(\dfrac{1}{25}) i ∑ X ˉ i 2 P ( X i ˉ ) = 5 4 2 ( 25 1 ) + 54. 5 2 ( 25 2 ) + 5 5 2 ( 25 1 )
+ 56. 5 2 ( 2 25 ) + 5 7 2 ( 2 25 ) + 58. 5 2 ( 2 25 ) + 5 9 2 ( 5 25 ) +56.5^2(\dfrac{2}{25})+57^2(\dfrac{2}{25})+58.5^2(\dfrac{2}{25})+59^2(\dfrac{5}{25}) + 56. 5 2 ( 25 2 ) + 5 7 2 ( 25 2 ) + 58. 5 2 ( 25 2 ) + 5 9 2 ( 25 5 )
+ 59. 5 2 ( 2 25 ) + 6 1 2 ( 2 25 ) + 61. 5 2 ( 2 25 ) + 6 3 2 ( 1 25 ) +59.5^2(\dfrac{2}{25})+61^2(\dfrac{2}{25})+61.5^2(\dfrac{2}{25})+63^2(\dfrac{1}{25}) + 59. 5 2 ( 25 2 ) + 6 1 2 ( 25 2 ) + 61. 5 2 ( 25 2 ) + 6 3 2 ( 25 1 )
+ 63. 5 2 ( 2 25 ) + 6 4 2 ( 2 25 ) = 3489.2 +63.5^2(\dfrac{2}{25})+64^2(\dfrac{2}{25})=3489.2 + 63. 5 2 ( 25 2 ) + 6 4 2 ( 25 2 ) = 3489.2
σ X ˉ 2 = ∑ i X ˉ i 2 P ( X i ˉ ) − μ X ˉ 2 = 3489.2 − 5 9 2 = 8.2 \sigma_{\bar{X}}^2=\sum_i\bar{X}_i^2P(\bar{X_i})-\mu_{\bar{X}}^2=3489.2-59^2=8.2 σ X ˉ 2 = i ∑ X ˉ i 2 P ( X i ˉ ) − μ X ˉ 2 = 3489.2 − 5 9 2 = 8.2
σ X ˉ = σ X ˉ 2 = 8.2 \sigma_{\bar{X}}=\sqrt{\sigma_{\bar{X}}^2}=\sqrt{8.2} σ X ˉ = σ X ˉ 2 = 8.2
μ X ˉ = 59 , σ X ˉ = 8.2 \mu_{\bar{X}}=59, \sigma_{\bar{X}}=\sqrt{8.2} μ X ˉ = 59 , σ X ˉ = 8.2
V.
The mean μ X ˉ \mu_{\bar{X}} μ X ˉ and standard deviation σ X ˉ \sigma_{\bar{X}} σ X ˉ of the sample mean X ˉ \bar{X} X ˉ satisfy
μ X ˉ = 59 = μ , σ X ˉ = 8.2 = 2 4.1 2 = σ n \mu_{\bar{X}}=59=\mu, \sigma_{\bar{X}}=\sqrt{8.2}=\dfrac{2\sqrt{4.1}}{\sqrt{2}}=\dfrac{\sigma}{\sqrt{n}} μ X ˉ = 59 = μ , σ X ˉ = 8.2 = 2 2 4.1 = n σ
Comments