a)
"\\mu=\\frac{\\sum x_i}{N}=\\frac{6+9+20+10+18+26+2+12+16+4+13+26+8+22+12}{15}=13.6"
b)
"Var(X)=\\frac{\\sum(x_i-\\mu)^2}{N}="
"=\\frac{7.6^2+4.6^2+6.4^2+3.6^2+4.4^2+12.4^2+11.6^2+1.6^2+2.4^2+9.6^2+0.6^2+12.4^2+5.6^2+8.4^2+1.6^2}{15}="
"=\\frac{799.6}{15}=53.31"
c)
"\\mu\\pm Z_{0.95}\\frac{\\sigma}{\\sqrt{n}}=13.6\\pm 1.96\\cdot \\frac{\\sqrt{53.31}}{\\sqrt{15}}=13.6\\pm 3.845"
confidence interval:
"13.6-3.845<\\mu<13.6+3.845"
"9.755<\\mu<17.445"
d)
"SE=\\sigma\/\\sqrt{n}=\\sqrt{53.31\/15}=1.885"
e)
the variance from the simple random sample:
"Var_1(X)=\\frac{\\sum(x_i-\\mu)^2}{N-1}=\\frac{799.6}{14}=57.11"
"Var_1(X)-Var(X)=57.11-53.31=3.8"
Comments
Leave a comment