Suppose that a random variable X has a DISCRETE distribution with probability mass function given as: P(x) = ( x / 2485 if x = 1, 2, . . . , 70 0 Otherwise a) Find P(x > 5) b) Find P(2 ≤ x ≤ 68) c) Find P(x = 70.5)
Solution.
Р(x)={x2485,if x=1,2,...,700,otherwise}Р(x)=\begin{Bmatrix} \frac{x}{2485}, \text{if }x=1,2,...,70 \\ 0, otherwise \end{Bmatrix}Р(x)={2485x,if x=1,2,...,700,otherwise}
a)
P(x>5)=1−P(x≤5)=1−12485−22485−32485−42485−52485=1−152485=24702485=0.994P(x>5)=1-P(x\leq 5)=1-\frac{1}{2485}-\frac{2}{2485}-\frac{3}{2485}-\frac{4}{2485}-\frac{5}{2485}=1-\frac{15}{2485}=\frac{2470}{2485}=0.994P(x>5)=1−P(x≤5)=1−24851−24852−24853−24854−24855=1−248515=24852470=0.994
b)
P(2≤x≤68)=P(68)−P(2)=682485−22485=662485=0.027P(2\leq x\leq 68)=P(68)-P(2)=\frac{68}{2485}-\frac{2}{2485}=\frac{66}{2485}=0.027P(2≤x≤68)=P(68)−P(2)=248568−24852=248566=0.027
c)
70.5>70, so 70.5 in otherwise.
P(x=70.5)=0P(x=70.5)=0P(x=70.5)=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments