a)
"S_{XX}=\\displaystyle\\sum_{i=1}^nX_i^2-\\dfrac{1}{n}(\\displaystyle\\sum_{i=1}^nX_i)^2""=6924-\\dfrac{1}{10}(254)^2=472.4"
"S_{YY}=\\displaystyle\\sum_{i=1}^nY_i^2-\\dfrac{1}{n}(\\displaystyle\\sum_{i=1}^nY_i)^2""=135693-\\dfrac{1}{10}(1163)^2=436.1"
"S_{XY}=\\displaystyle\\sum_{i=1}^nX_iY_i-\\dfrac{1}{n}(\\displaystyle\\sum_{i=1}^nX_i)(\\displaystyle\\sum_{i=1}^nY_i)""=29942-\\dfrac{1}{10}(254)(1163)=401.8"
"r=\\dfrac{S_{XY}}{\\sqrt{S_{XX}}\\sqrt{S_{YY}}}=\\dfrac{401.8}{\\sqrt{472.4}\\sqrt{436.1}}=0.885242"
"r>0.7" Strong positive correlation.
b)
78.37 percent of the variance in Y is explained by regression line..
c)
"slope=m=\\dfrac{S_{XY}}{S_{XX}}=\\dfrac{401.8}{472.4}=0.85055""\\bar{X}=\\dfrac{1}{n}\\displaystyle\\sum_{i=1}^nX_i=\\dfrac{1}{10}(254)=25.4"
"\\bar{Y}=\\dfrac{1}{n}\\displaystyle\\sum_{i=1}^nY_i=\\dfrac{1}{10}(1163)=116.3"
"b=\\bar{Y}-m\\bar{X}=116.3-0.85055(25.4)=94.69603"
The regression equation is:
d)
A man from this population who is aged 38 years and who has a BMI of 30 has the systolic blood pressure of 120.2 mmttg.
Comments
Leave a comment