a)
X Y X Y X 2 Y 2 13 103 1339 169 10609 23 115 2645 529 13225 29 124 3596 841 15376 35 126 4410 1225 15876 17 108 1836 289 11664 34 120 4080 1156 14400 25 113 2825 625 12769 20 117 2340 400 13689 31 118 3658 961 13924 27 119 3213 729 14161 s u m = 254 1163 29942 6924 135693 \begin{matrix}
& X & Y & XY & X^2 & Y^2 \\
& 13 & 103 & 1339 & 169 & 10609 \\
& 23 & 115 & 2645 & 529 & 13225 \\
& 29 & 124 & 3596 & 841 & 15376 \\
& 35 & 126 & 4410 & 1225 & 15876 \\
& 17 & 108 & 1836 & 289 & 11664 \\
& 34 & 120 & 4080 & 1156 & 14400 \\
& 25 & 113 & 2825 & 625 & 12769 \\
& 20 & 117 & 2340 & 400 & 13689 \\
& 31 & 118 & 3658 & 961 & 13924 \\
& 27 & 119 & 3213 & 729 & 14161 \\
sum= & 254 & 1163 & 29942 & 6924 & 135693 \\
\end{matrix} s u m = X 13 23 29 35 17 34 25 20 31 27 254 Y 103 115 124 126 108 120 113 117 118 119 1163 X Y 1339 2645 3596 4410 1836 4080 2825 2340 3658 3213 29942 X 2 169 529 841 1225 289 1156 625 400 961 729 6924 Y 2 10609 13225 15376 15876 11664 14400 12769 13689 13924 14161 135693
S X X = ∑ i = 1 n X i 2 − 1 n ( ∑ i = 1 n X i ) 2 S_{XX}=\displaystyle\sum_{i=1}^nX_i^2-\dfrac{1}{n}(\displaystyle\sum_{i=1}^nX_i)^2 S XX = i = 1 ∑ n X i 2 − n 1 ( i = 1 ∑ n X i ) 2 = 6924 − 1 10 ( 254 ) 2 = 472.4 =6924-\dfrac{1}{10}(254)^2=472.4 = 6924 − 10 1 ( 254 ) 2 = 472.4
S Y Y = ∑ i = 1 n Y i 2 − 1 n ( ∑ i = 1 n Y i ) 2 S_{YY}=\displaystyle\sum_{i=1}^nY_i^2-\dfrac{1}{n}(\displaystyle\sum_{i=1}^nY_i)^2 S YY = i = 1 ∑ n Y i 2 − n 1 ( i = 1 ∑ n Y i ) 2 = 135693 − 1 10 ( 1163 ) 2 = 436.1 =135693-\dfrac{1}{10}(1163)^2=436.1 = 135693 − 10 1 ( 1163 ) 2 = 436.1
S X Y = ∑ i = 1 n X i Y i − 1 n ( ∑ i = 1 n X i ) ( ∑ i = 1 n Y i ) S_{XY}=\displaystyle\sum_{i=1}^nX_iY_i-\dfrac{1}{n}(\displaystyle\sum_{i=1}^nX_i)(\displaystyle\sum_{i=1}^nY_i) S X Y = i = 1 ∑ n X i Y i − n 1 ( i = 1 ∑ n X i ) ( i = 1 ∑ n Y i ) = 29942 − 1 10 ( 254 ) ( 1163 ) = 401.8 =29942-\dfrac{1}{10}(254)(1163)=401.8 = 29942 − 10 1 ( 254 ) ( 1163 ) = 401.8
r = S X Y S X X S Y Y = 401.8 472.4 436.1 = 0.885242 r=\dfrac{S_{XY}}{\sqrt{S_{XX}}\sqrt{S_{YY}}}=\dfrac{401.8}{\sqrt{472.4}\sqrt{436.1}}=0.885242 r = S XX S YY S X Y = 472.4 436.1 401.8 = 0.885242
r > 0.7 r>0.7 r > 0.7 Strong positive correlation.
b)
r 2 = S X Y S X X S Y Y = 401.8 472.4 ( 436.1 ) = 0.783653 r^2=\dfrac{S_{XY}}{S_{XX}S_{YY}}=\dfrac{401.8}{472.4(436.1)}=0.783653 r 2 = S XX S YY S X Y = 472.4 ( 436.1 ) 401.8 = 0.783653 78.37 percent of the variance in Y is explained by regression line..
c)
s l o p e = m = S X Y S X X = 401.8 472.4 = 0.85055 slope=m=\dfrac{S_{XY}}{S_{XX}}=\dfrac{401.8}{472.4}=0.85055 s l o p e = m = S XX S X Y = 472.4 401.8 = 0.85055
X ˉ = 1 n ∑ i = 1 n X i = 1 10 ( 254 ) = 25.4 \bar{X}=\dfrac{1}{n}\displaystyle\sum_{i=1}^nX_i=\dfrac{1}{10}(254)=25.4 X ˉ = n 1 i = 1 ∑ n X i = 10 1 ( 254 ) = 25.4
Y ˉ = 1 n ∑ i = 1 n Y i = 1 10 ( 1163 ) = 116.3 \bar{Y}=\dfrac{1}{n}\displaystyle\sum_{i=1}^nY_i=\dfrac{1}{10}(1163)=116.3 Y ˉ = n 1 i = 1 ∑ n Y i = 10 1 ( 1163 ) = 116.3
b = Y ˉ − m X ˉ = 116.3 − 0.85055 ( 25.4 ) = 94.69603 b=\bar{Y}-m\bar{X}=116.3-0.85055(25.4)=94.69603 b = Y ˉ − m X ˉ = 116.3 − 0.85055 ( 25.4 ) = 94.69603 The regression equation is:
y = 94.69603 + 0.85055 x y=94.69603+0.85055x y = 94.69603 + 0.85055 x
d)
y = 94.69603 + 0.85055 ( 30 ) = 120.2 y=94.69603+0.85055(30)=120.2 y = 94.69603 + 0.85055 ( 30 ) = 120.2
A man from this population who is aged 38 years and who has a BMI of 30 has the systolic blood pressure of 120.2 mmttg.
Comments