Part 1
The probability that a man who likes carrots is a meat eater
=(10080×10060)×(10020×10080)=(54×53)×(10020×54)=2512×254=62548
Part 2
Back-up Theory
If A and B are independent, P(A and B) = P(A ∩ B) = P(A) x P(B) ..……….....................…(1)
Now to work out the solution,
Given,
X = number of tosses until one of the two coins turns up a head and the other a tail.
P(the first coin turns up head) = 0.74 ....................................................................................... (2)
P(the second coin turns up head) = 0.12 ................................................................................. (3)
The pay-off at the end of the game: G(X) = X2 + 2 ....................................................................(4)
All tosses are independent. ................................................................................................ (5)
We want:
P[G(X)>6]=P[X2+2>6][vide(4)]=P[X2>4]=P(X>2)[noteX2>4=>X>2orX<−2;butthenXcannotbenegative]=1–P(X≤2)=1–P(X=2)
[‘one of the two coins turns up ahead and the other a tail’ => minimum value of X is 2 ]
= 1 – [P{(the first coin turns up head and the second coin turns up tail)}
+ P{(the first coin turns up tail and the second coin turns up head)}]
= 1 – {(0.74 x 0.88) + ((0.26 x 0.12))} [vide (5), (1), (2) and (3)]
= 1 – 0.6824
= 0.3176
Part 3
∂x∂(x9y6)=9x8y6∂y∂(x9y6)=6x9y5
Part 4
=>GCD(493,899−493)=GCD(493,406)=>GCD(493−406,406)=GCD(87,406)=>GCD(87,406−87)=GCD(87,319)=>GCD(87,319−87)=GCD(87,232)=>GCD(87,232−87)=GCD(87,145)=>GCD(87,145−87)=GCD(87,58)=>GCD(87−58,58)=GCD(29,58)=>GCD(29,58−29)=GCD(29,29)=>GCD(29,29−29)=GCD(29,0)GCD(29,0)is29
Comments