We can present the union of events as: A∪B=(A\(A∩B))∪(A∩B)∪(B\(A∩B)). Thus, we get: P(A∪B)=P(A\(A∩B))+P((A∩B))+P(B\(A∩B))=P(A)+P(B\(A∩B)).
From the latter we find: P(A∪B)−P(A)=P(B\(A∩B)).
From the latter we find that: 0.53−0.45=P(B)−P(A∩B) . We substitute P(B)=0.22 and get: P(A∩B)=0.22−0.08=0.14.
Denote the whole probability space by X. Then, Aˉ=X\A and Bˉ=X\B. Thus, we get: Aˉ∪Bˉ=(X\A)∪(X\B)=X\(A∩B). We get:
a). P(Aˉ∪Bˉ)=P(X\(A∩B))=P(X)−P(A∩B)=1−0.14=0.86.
b). For independent events one has: P(A∩B)=P(A)P(B). P(A)P(B)=0.099. It follows from the formulation of the problem. As we can see P(A)P(B)=P(A∩B). Thus, the events are not independent.
Comments