Question #238971

Two events A and B are such that 𝑃(𝐴) = 0.45, 𝑃(𝐵) = 0.22 𝑎𝑛𝑑 𝑃(𝐴 ∪ 𝐵) = 0.53.

5.1.1 Find 𝑃(𝐴̅∪ 𝐵̅)

5.1.2 Are the events A and B independent? 


1
Expert's answer
2021-09-21T12:31:28-0400

We can present the union of events as: AB=(A\(AB))(AB)(B\(AB))A\cup B=(A\backslash(A\cap B))\cup(A\cap B)\cup(B\backslash(A\cap B)). Thus, we get: P(AB)=P(A\(AB))+P((AB))+P(B\(AB))=P(A)+P(B\(AB))P(A\cup B)=P(A\backslash(A\cap B))+P((A\cap B))+P(B\backslash(A\cap B))=P(A)+P(B\backslash(A\cap B)).

From the latter we find: P(AB)P(A)=P(B\(AB))P(A\cup B)-P(A)=P(B\backslash(A\cap B)).

From the latter we find that: 0.530.45=P(B)P(AB)0.53-0.45=P(B)-P(A\cap B) . We substitute P(B)=0.22P(B)=0.22 and get: P(AB)=0.220.08=0.14P(A\cap B)=0.22-0.08=0.14.

Denote the whole probability space by XX. Then, Aˉ=X\A\bar{A}=X\backslash A and Bˉ=X\B\bar{B}=X\backslash B. Thus, we get: AˉBˉ=(X\A)(X\B)=X\(AB)\bar{A}\cup{\bar{B}}=(X\backslash A)\cup(X\backslash B)=X\backslash(A\cap B). We get:

a). P(AˉBˉ)=P(X\(AB))=P(X)P(AB)=10.14=0.86P(\bar{A}\cup{\bar{B}})=P(X\backslash(A\cap B))=P(X)-P(A\cap B)=1-0.14=0.86.

b). For independent events one has: P(AB)=P(A)P(B)P(A\cap B)=P(A)P(B). P(A)P(B)=0.099P(A)P(B)=0.099. It follows from the formulation of the problem. As we can see P(A)P(B)P(AB)P(A)P(B)\neq P(A\cap B). Thus, the events are not independent.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS