Question #238444

b) Repeated tests on the determination of human blood composition during a laboratory analysis are known to be normally distributed. Ten tests on a given sample of blood yielded the values 2.002, 1.958, 2.034, 3.987, 3.987 4.014, 3.009, 1.031, 2.048, 1.024, 1.0886, 1.019, 0.020. Find a 90 per cent confidence interval for true composition of the blood in repeated tests of the sample, and what is the margin of error?



1
Expert's answer
2021-09-20T05:12:11-0400
mean=xˉ=113(2.002+1.958+2.034+3.987mean=\bar{x}=\dfrac{1}{13}(2.002+1.958+2.034+3.987

+3.987+4.014+3.009+1.031+2.048+3.987+ 4.014+3.009+1.031+2.048

+1.024+1.0886+1.019+0.020)=2.094+1.024+1.0886+1.019+0.020)=2.094


s2=1131((2.0022.094)2+(1.9582.094)2s^2=\dfrac{1}{13-1}((2.002-2.094)^2+(1.958-2.094)^2

+(2.0342.094)2+(3.9872.094)2+(2.034-2.094)^2+(3.987-2.094)^2

+(3.9872.094)2+(4.0142.094)2+(3.987-2.094)^2+(4.014-2.094)^2

+(3.0092.094)2+(1.0312.094)2+(3.009-2.094)^2+(1.031-2.094)^2

+(2.0482.094)2+(1.0242.094)2+(2.048-2.094)^2+(1.024-2.094)^2


+(1.08862.094)2+(1.0192.094)2+(1.0886-2.094)^2+(1.019-2.094)^2

+(0.0202.094)2)=1.7055+(0.020-2.094)^2)=1.7055

s=s2=1.306s=\sqrt{s^2}=1.306

The critical value for α=0.1\alpha=0.1 and df=n1=131=12df=n-1=13-1=12 degrees of freedom is tc=z1α/2,n1=1.782288.t_c=z_{1-\alpha/2, n-1}=1.782288.

The corresponding confidence interval is computed as shown below:


(1.448,2.740)CI=(xˉtc×sn,xˉ+tc×sn)(1.448, 2.740)CI=(\bar{x}-t_c\times \dfrac{s}{\sqrt{n}}, \bar{x}+t_c\times \dfrac{s}{\sqrt{n}})

=(2.0941.782×1.30612,2.094+1.782×1.30612)=(2.094-1.782\times \dfrac{1.306}{\sqrt{12}}, 2.094+1.782\times \dfrac{1.306}{\sqrt{12}})

=(1.448,2.740)=(1.448, 2.740)

Therefore, based on the data provided, the 90% confidence interval for the population mean is 1.448<μ<2.740,1.448<\mu<2.740, which indicates that we are 90% confident that the true population mean μ\mu is contained by the interval (1.448,2.740)(1.448, 2.740).

margin of error=tc×snmargin\ of\ error=t_c\times \dfrac{s}{\sqrt{n}}

=1.782×1.30612=0.646=1.782\times \dfrac{1.306}{\sqrt{12}}=0.646


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS