Solution:
X∼Bernoulli(p),0≤p≤1
So, P(X=x)={1−pp if x=0 if x=1
Now the expected value of X:
E(X)=0⋅P(X=0)+1⋅P(X=1)=0×(1−p)+1×p=p
(a):
E(X2)=02⋅P(X=0)+12⋅P(X=1)=0×(1−p)+1×p=p
(b):
Var(X)=E(X2)−E2(X)=p−p2=p(1−p)
(c):
E(X79)=079⋅P(X=0)+179⋅P(X=1)=0×(1−p)+1×p=p
Comments
Thanks for the excellent work and services !!