Let X be a Bernoulli random variable (Hint: Special case of Binomial Distribution)
a. Compute E(X2)
b. Show that V(X) is p(1-p)
c. Compute E(X79)
Solution:
"X \\sim \\operatorname{Bernoulli}(p), 0 \\leq p \\leq 1"
So, "P(X=x)= \\begin{cases}1-p & \\text { if } x=0 \\\\ p & \\text { if } x=1\\end{cases}"
Now the expected value of X:
"\\begin{aligned}\n\nE(X) &=0 \\cdot P(X=0)+1 \\cdot P(X=1) \\\\\n\n&=0 \\times(1-p)+1 \\times p \\\\\n\n&=p\n\n\\end{aligned}"
(a):
"\\begin{aligned}\n\nE\\left(X^{2}\\right) &=0^{2} \\cdot P(X=0)+1^{2} \\cdot P(X=1) \\\\\n\n&=0 \\times(1-p)+1 \\times p \\\\\n\n&=p\n\n\\end{aligned}"
(b):
"\\begin{aligned}\n\n\\operatorname{Var}(X) &=E\\left(X^{2}\\right)-E^{2}(X) \\\\\n\n&=p-p^{2} \\\\\n\n&=p(1-p)\n\n\\end{aligned}"
(c):
"\\begin{aligned}\n\nE\\left(X^{79}\\right) &=0^{79} \\cdot P(X=0)+1^{79} \\cdot P(X=1) \\\\\n\n&=0 \\times(1-p)+1 \\times p \\\\\n\n&=p\n\n\\end{aligned}"
Comments
Thanks for the excellent work and services !!
Leave a comment