P(X>x)=e−λxP(X>x) = e^{-λx}P(X>x)=e−λx
a) P(X>1000)=exp(−λx)P(X>1000) = exp(-\lambda x)P(X>1000)=exp(−λx)
=exp(−0.001×1000)=0.3678= exp(-0.001 \times 1000) \\ = 0.3678=exp(−0.001×1000)=0.3678
b) P(X<1200)=1−exp(−0.001×1200)P(X<1200)= 1 - exp(-0.001 \times 1200)P(X<1200)=1−exp(−0.001×1200)
=1−0.3012=0.6988= 1 -0.3012 \\ = 0.6988=1−0.3012=0.6988
c) Mean
μ=1λμ=10.001=1000\mu = \frac{1}{λ} \\ \mu = \frac{1}{0.001} = 1000μ=λ1μ=0.0011=1000
Variance
σ2=1λ2σ2=1(0.001)2=106\sigma^2 = \frac{1}{λ^2} \\ \sigma^2 = \frac{1}{(0.001)^2} \\ = 10^6σ2=λ21σ2=(0.001)21=106
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments