Find the expectation of a random variable X if f(x) = ce⁻ ˣ for x>0 and 0 otherwise.
Solution:
"\\int_0^{\\infty} f(x)dx=1\n\\\\\\Rightarrow\\int_0^{\\infty} (ce^{-x})dx=1\n\\\\\\Rightarrow -c[e^{-x}]_0^{\\infty}=1\n\\\\\\Rightarrow -c[0-1]=1\n\\\\\\Rightarrow c=1"
Then,
"E[X]=\\int_0^{\\infty}x f(x)dx\n\\\\=\\int_0^{\\infty}x (ce^{-x})dx\n\\\\=\\int_0^{\\infty}x e^{-x}dx\n\\\\=[-e^{-x}x-e^{-x}]_0^{\\infty}\n\\\\=[0-0]-[0-1]\n\\\\=1"
Comments
Leave a comment