Question #233399

Find the expectation of a random variable X if f(x) = ce⁻ ˣ for x>0 and 0 otherwise.


1
Expert's answer
2021-09-06T16:16:58-0400

Solution:

0f(x)dx=10(cex)dx=1c[ex]0=1c[01]=1c=1\int_0^{\infty} f(x)dx=1 \\\Rightarrow\int_0^{\infty} (ce^{-x})dx=1 \\\Rightarrow -c[e^{-x}]_0^{\infty}=1 \\\Rightarrow -c[0-1]=1 \\\Rightarrow c=1

Then,

E[X]=0xf(x)dx=0x(cex)dx=0xexdx=[exxex]0=[00][01]=1E[X]=\int_0^{\infty}x f(x)dx \\=\int_0^{\infty}x (ce^{-x})dx \\=\int_0^{\infty}x e^{-x}dx \\=[-e^{-x}x-e^{-x}]_0^{\infty} \\=[0-0]-[0-1] \\=1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS