Question #233397
Find the variance of t? t 0 1 2 3 4 f(t) 1/9 2/9 3/9 2/9 1/9
1
Expert's answer
2021-09-06T16:32:58-0400
t01234f(t)1/92/93/92/91/9\begin{matrix} t & & 0 & 1 & 2 & 3 & 4 \\ f(t) & & 1/9 & 2/9 & 3/9 & 2/9 & 1/9 \end{matrix}

E(T)=μ=19(0)+29(1)+39(2)+29(3)+19(4)E(T)=\mu=\dfrac{1}{9}(0)+\dfrac{2}{9}(1)+\dfrac{3}{9}(2)+\dfrac{2}{9}(3)+\dfrac{1}{9}(4)

=2=2

E(T2)=19(0)2+29(1)2+39(2)2+29(3)2+19(4)2E(T^2)=\dfrac{1}{9}(0)^2+\dfrac{2}{9}(1)^2+\dfrac{3}{9}(2)^2+\dfrac{2}{9}(3)^2+\dfrac{1}{9}(4)^2

=163=\dfrac{16}{3}

Var(T)=E(T2)(E(T))2=163(2)2=43Var(T)=E(T^2)-(E(T))^2=\dfrac{16}{3}-(2)^2=\dfrac{4}{3}

Var(T)=E((Tμ)2)Var(T)=E((T-\mu)^2)

=19(02)2+29(12)2+39(22)2+29(32)2=\dfrac{1}{9}(0-2)^2+\dfrac{2}{9}(1-2)^2+\dfrac{3}{9}(2-2)^2+\dfrac{2}{9}(3-2)^2

+19(42)2=43+\dfrac{1}{9}(4-2)^2=\dfrac{4}{3}



Var(T)=43Var(T)=\dfrac{4}{3}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS