a) Sample mean "\\bar{x}=\\frac{\\sum {x_i}}{N}=\\frac{415.35}{20}=20.768;\\\\"
Sorted data Y=
18.040 18.710 18.920 19.250 19.290 19.440 19.770 20.170 20.330 20.500 20.720 21.120 21.410 21.770 21.810 22.110 22.430
22.850 23.000 23.710;
"Y_{10}=20,500\\space Y_{11}=20.720,\\\\Me=\\frac{Y_{10}+Y_{11}}{2}=\\frac{20.500+20.720}{2}=20.610;"
b)
Let we trim Y by removing 10% or 2 largest and 1o% or 2 smallest samples:
Y'=18.920 19.250 19.290 19.440 19.770 20.170 20.330 20.500 20.720 21.120 21.410 21.770 21.810 22.110 22.430 22.850
Sum(Y')=331.89;
"\\bar{x}_{.10}=\\frac{Sum(Y')}{16}=\\frac{331.89}{16}= 20.743"
c)
d) if "|Me-\\bar{x}|>k\\cdot|Me-\\bar{x}_{.10}|"
where k some weight for example k=2 then there are outliers with considerable reliability. For given data we have
"\\frac{|Me-\\bar{x}}{|Me-\\bar{x}_{10}|}=\\frac{20.768-20.610}{20.768-20\/743}=\\frac{0.158}{0.025}=6.32>2"
So we should conclude that outlers are.
Comments
Leave a comment