Question #231640

Calculate karl pearsons coefficent of correlation for the following data ?

X - 105,111,104,112,118,98,116,103,106,112

Y- 62,64,53,60,72,56,68,60,69,65


1
Expert's answer
2021-09-03T07:38:08-0400
xy1056211164104531126011872985611668103601066911265\def\arraystretch{1.5} \begin{array}{c:c:c} x & y \\ \hline 105 & 62 \\ \hline 111 & 64 \\ \hline 104 & 53 \\ \hline 112 & 60 \\\hline 118 & 72 \\ \hline 98 & 56 \\ \hline 116 & 68 \\ \hline 103 & 60 \\ \hline 106 & 69 \\ \hline 112 & 65 \\ \end{array}

xˉ=ixin\bar{x}=\dfrac{\sum_ix_i}{n}

=105+111+104+112+118+98+116+103+106+11210=\dfrac{105+111+104+112+118+98+116+103+106+112}{10}

=108.5=108.5

yˉ=iyin\bar{y}=\dfrac{\sum_iy_i}{n}

=62+64+53+60+72+56+68+60+69+6510=\dfrac{62+64+53+60+72+56+68+60+69+65}{10}

=62.9=62.9

Sxx=i(xixˉ)2=ixi2nxˉ2=356.5S_{xx}=\sum_i(x_i-\bar{x})^2=\sum_ix_i^2-n\cdot\bar{x}^2=356.5

Sxy=i(xixˉ)(yiyˉ)=ixiyinxˉyˉ=245.5S_{xy}=\sum_i(x_i-\bar{x})(y_i-\bar{y})=\sum_ix_iy_i-n\cdot\bar{x}\bar{y}=245.5

Syy=i(yiyˉ)2=iyi2nyˉ2=314.9S_{yy}=\sum_i(y_i-\bar{y})^2=\sum_iy_i^2-n\cdot\bar{y}^2=314.9

r=SxySxxSyy=245.5356.5314.9=0.7327r=\dfrac{S_{xy}}{\sqrt{S_{xx}}\sqrt{S_{yy}}}=\dfrac{245.5}{\sqrt{356.5}\sqrt{314.9}}=0.7327

Strong correlation


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS