Two 4-sided dice are tossed and the sum of the down sides noted. A 4-sided die doesn’t have an “up” face like a 6-sided die has, so the down side is used. Create a probability distribution table for this experiment. Type out your full solution.please need it NOW
"P\\left(X=2\\right)\\:=P\\left(both\\:sides\\:show\\:1\\right)\\:=\\frac{1}{16}\\left(one\\:outcome\\:\\left(1,1\\right)\\right)"
"P\\left(X=3\\right)\\:=\\frac{2}{16}=1\/8\\:\\left(two\\:outcomes\\:\\left(1,2\\right),\\left(2,1\\right)\\right)"
"P\\left(X=4\\right)\\:=\\frac{3}{16}\\left(three\\:outcomes\\:\\left(1,3\\right),\\left(2,2\\right),\\left(3,1\\right)\\right)"
"P\\left(X=5\\right)=\\frac{4}{16}\\:=\\frac{1}{4}\\:\\left(four\\:outcomes\\:\\left(1,4\\right),\\left(2,3\\right),\\left(3,2\\right),\\left(4,1\\right)\\right)"
"P\\left(X=6\\right)\\:=\\frac{3}{16}\\left(three\\:outcomes\\:\\left(2,4\\right),\\left(3,3\\right),\\left(4,2\\right)\\right)"
"P\\left(X=7\\right)=\\frac{2}{16}\\:=\\frac{1}{8}\\:\\left(two\\:outcomes\\:\\left(3,4\\right),\\left(4,3\\right)\\right)"
"P\\left(X=8\\right)=\\frac{1}{16}\\:\\left(one\\:such\\:outcome\\:\\left(4,4\\right)\\right)"
Therefore, from the above result, the probability distribution table is presented as follows:
Comments
Leave a comment