Let A and B be the number of points on the first and second dice, respectively.
Find the corresponding probabilities for the sum A + B up to six:
p(A+B=2)=p(A=1)⋅p(B=1)=(1−6x)2
p(A+B=3)=p(A=1)⋅p(B=2)+p(A=2)⋅p(B=1)=(1−6x)(1+62x)+(1+62x)(1−6x)=2(1−6x)(1+62x)
p(A+B=4)=p(A=1)⋅p(B=3)+p(A=3)⋅p(B=1)+p(A=2)⋅p(B=2)=(1−6x)2+(1−6x)2+(1+62x)2=2(1−6x)2+(1+62x)2
p(A+B=5)=p(A=1)⋅p(B=4)+p(A=2)⋅p(B=3)+p(A=3)⋅p(B=2)+p(A=4)⋅p(B=1)=(1−6x)(1+6x)+(1+62x)(1−6x)+(1−6x)(1+62x)+(1−6x)(1+6x)=2(1−36x2)+2(1−6x)(1+62x)
p(A+B=6)=p(A=1)⋅p(B=5)+p(A=2)⋅p(B=4)+p(A=3)⋅p(B=3)+p(A=4)⋅p(B=2)+p(A=5)⋅p(B=1)=(1−6x)(1−62x)+(1+6x)(1+62x)+(1−6x)2+(1+6x)(1+62x)+(1−6x)(1−62x)=2(1−6x)(1−62x)+2(1+6x)(1+62x)+(1−6x)2
We have a probability distribution:
A+B23456P(1−6x)22(1−6x)(1+62x)2(1−6x)2+(1+62x)22(1−36x2)+2(1−6x)(1+62x)2(1−6x)(1−62x)+2(1+6x)(1+62x)+(1−6x)2
Comments