Question #225058
Two loaded dice were tossed so that the probabilities of 1,2,3,4,5,6 are 1-x/6, 1+2x/6, 1-x/6, 1+x/6, 1-2x/6, x+x/6 respectively. Compute the probability in rolling such dice sum up to six
1
Expert's answer
2021-08-11T13:06:47-0400

Let A and B be the number of points on the first and second dice, respectively.

Find the corresponding probabilities for the sum A + B up to six:

p(A+B=2)=p(A=1)p(B=1)=(1x6)2p(A + B = 2) = p(A = 1) \cdot p(B = 1) = {\left( {1 - \frac{x}{6}} \right)^2}

p(A+B=3)=p(A=1)p(B=2)+p(A=2)p(B=1)=(1x6)(1+2x6)+(1+2x6)(1x6)=2(1x6)(1+2x6)p(A + B = 3) = p(A = 1) \cdot p(B = 2) + p(A = 2) \cdot p(B = 1) = \left( {1 - \frac{x}{6}} \right)\left( {1 + \frac{{2x}}{6}} \right) + \left( {1 + \frac{{2x}}{6}} \right)\left( {1 - \frac{x}{6}} \right) = 2\left( {1 - \frac{x}{6}} \right)\left( {1 + \frac{{2x}}{6}} \right)

p(A+B=4)=p(A=1)p(B=3)+p(A=3)p(B=1)+p(A=2)p(B=2)=(1x6)2+(1x6)2+(1+2x6)2=2(1x6)2+(1+2x6)2p(A + B = 4) = p(A = 1) \cdot p(B = 3) + p(A = 3) \cdot p(B = 1) + p(A = 2) \cdot p(B = 2) = {\left( {1 - \frac{x}{6}} \right)^2} + {\left( {1 - \frac{x}{6}} \right)^2} + {\left( {1 + \frac{{2x}}{6}} \right)^2} = 2{\left( {1 - \frac{x}{6}} \right)^2} + {\left( {1 + \frac{{2x}}{6}} \right)^2}

p(A+B=5)=p(A=1)p(B=4)+p(A=2)p(B=3)+p(A=3)p(B=2)+p(A=4)p(B=1)=(1x6)(1+x6)+(1+2x6)(1x6)+(1x6)(1+2x6)+(1x6)(1+x6)=2(1x236)+2(1x6)(1+2x6)p(A + B = 5) = p(A = 1) \cdot p(B = 4) + p(A = 2) \cdot p(B = 3) + p(A = 3) \cdot p(B = 2) + p(A = 4) \cdot p(B = 1) = \left( {1 - \frac{x}{6}} \right)\left( {1 + \frac{x}{6}} \right) + \left( {1 + \frac{{2x}}{6}} \right)\left( {1 - \frac{x}{6}} \right) + \left( {1 - \frac{x}{6}} \right)\left( {1 + \frac{{2x}}{6}} \right) + \left( {1 - \frac{x}{6}} \right)\left( {1 + \frac{x}{6}} \right) = 2\left( {1 - \frac{{{x^2}}}{{36}}} \right) + 2\left( {1 - \frac{x}{6}} \right)\left( {1 + \frac{{2x}}{6}} \right)

p(A+B=6)=p(A=1)p(B=5)+p(A=2)p(B=4)+p(A=3)p(B=3)+p(A=4)p(B=2)+p(A=5)p(B=1)=(1x6)(12x6)+(1+x6)(1+2x6)+(1x6)2+(1+x6)(1+2x6)+(1x6)(12x6)=2(1x6)(12x6)+2(1+x6)(1+2x6)+(1x6)2p(A + B = 6) = p(A = 1) \cdot p(B = 5) + p(A = 2) \cdot p(B = 4) + p(A = 3) \cdot p(B = 3) + p(A = 4) \cdot p(B = 2) + p(A = 5) \cdot p(B = 1) = \left( {1 - \frac{x}{6}} \right)\left( {1 - \frac{{2x}}{6}} \right) + \left( {1 + \frac{x}{6}} \right)\left( {1 + \frac{{2x}}{6}} \right) + {\left( {1 - \frac{x}{6}} \right)^2} + \left( {1 + \frac{x}{6}} \right)\left( {1 + \frac{{2x}}{6}} \right) + \left( {1 - \frac{x}{6}} \right)\left( {1 - \frac{{2x}}{6}} \right) = 2\left( {1 - \frac{x}{6}} \right)\left( {1 - \frac{{2x}}{6}} \right) + 2\left( {1 + \frac{x}{6}} \right)\left( {1 + \frac{{2x}}{6}} \right) + {\left( {1 - \frac{x}{6}} \right)^2}

We have a probability distribution:

A+BP2(1x6)232(1x6)(1+2x6)42(1x6)2+(1+2x6)252(1x236)+2(1x6)(1+2x6)62(1x6)(12x6)+2(1+x6)(1+2x6)+(1x6)2\begin{matrix} {A + B}&P\\ 2&{{{\left( {1 - \frac{x}{6}} \right)}^2}}\\ 3&{2\left( {1 - \frac{x}{6}} \right)\left( {1 + \frac{{2x}}{6}} \right)}\\ 4&{2{{\left( {1 - \frac{x}{6}} \right)}^2} + {{\left( {1 + \frac{{2x}}{6}} \right)}^2}}\\ 5&{2\left( {1 - \frac{{{x^2}}}{{36}}} \right) + 2\left( {1 - \frac{x}{6}} \right)\left( {1 + \frac{{2x}}{6}} \right)}\\ 6&{2\left( {1 - \frac{x}{6}} \right)\left( {1 - \frac{{2x}}{6}} \right) + 2\left( {1 + \frac{x}{6}} \right)\left( {1 + \frac{{2x}}{6}} \right) + {{\left( {1 - \frac{x}{6}} \right)}^2}} \end{matrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS