The weights (in grams) of the contents of several small bottles are 4, 3, 5, 4, 5 and
3. Find mean, Standard deviation and the coefficient of variation
Mean: μ=4+3+5+4+5+36=246=4.\mu=\frac{4+3+5+4+5+3}{6}=\frac{24}{6}=4.μ=64+3+5+4+5+3=624=4.
Variance: σ2=(4−4)2+(3−4)2+(5−4)2+(4−4)2+(5−4)2+(3−4)26=46≈0.6667.\sigma^2=\frac{(4-4)^2+(3-4)^2+(5-4)^2+(4-4)^2+(5-4)^2+(3-4)^2}{6}=\frac{4}{6}\approx0.6667.σ2=6(4−4)2+(3−4)2+(5−4)2+(4−4)2+(5−4)2+(3−4)2=64≈0.6667.
Standard deviation: σ=23≈0.8165.\sigma=\sqrt\frac{2}{3}\approx0.8165.σ=32≈0.8165.
Coefficient of variation: CV=σμ=0.81654=0.2041=20.41%.CV=\frac{\sigma}{\mu}=\frac{0.8165}{4}=0.2041=20.41\%.CV=μσ=40.8165=0.2041=20.41%.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments