Solution:
(a):
Let 𝑋 be the number of errors made in one page. Then 𝑋 has a Poisson distribution with 𝜆 = 3 per page
(i) :P(X≥5)=1−P(X<5)=1−[P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)]
=1−(0!e−330+1e−331+2!e−332+3!e−333+4!e−334)=0.18474
(ii): P(X=0)=0!e−330=0.04979
(b):
μ=40,σ=6.3
X∼N(μ,σ)
(i): P(X>30)=1−P(X≤30)=1−P(z≤6.330−40)=1−P(z≤−1.59)
=1−[P(z≥1.59)]=P(z<1.59)=0.94408
(ii): P(X<26)=P(z≤6.326−40)=P(z≤−2.22)=1−P(z<2.22)=0.01321
(iii): P(35≤X≤47)=P(X≤47)−P(X≤35)=P(z≤6.347−40)−P(z≤6.335−40)
=P(z≤1.11)−P(z≤−0.79)
=P(z≤1.11)−1+P(z≤0.79)=0.86650−1+0.78524=0.65174
Comments
Leave a comment