From a box containing 5 dimes and 3 nickels, 4 coins are selected at random without replacement.
Find the probability distribution for the total T of the 4 coins. Express the probability distribution graphically as a probability histogram. Find the Expected Value and Standard Deviation of the number of coins.
"P(3D \\& 1N)=\\dfrac{\\dbinom{5}{3}\\dbinom{3}{1}}{\\dbinom{5+3}{4}}=\\dfrac{3}{7}"
"P(2D \\& 2N)=\\dfrac{\\dbinom{5}{2}\\dbinom{3}{2}}{\\dbinom{5+3}{4}}=\\dfrac{3}{7}"
"P(1D \\& 3N)=\\dfrac{\\dbinom{5}{1}\\dbinom{3}{3}}{\\dbinom{5+3}{4}}=\\dfrac{1}{14}"
"E(T)=\\dfrac{1}{14}(0.40)+\\dfrac{3}{7}(0.35)+\\dfrac{3}{7}(0.30)+\\dfrac{1}{14}(0.25)"
"=0.325"
"E(T^2)=\\dfrac{1}{14}(0.40)^2+\\dfrac{3}{7}(0.35)^2+\\dfrac{3}{7}(0.30)^2"
"+\\dfrac{1}{14}(0.25)^2=\\dfrac{1.4975}{14}"
"Var(T)=\\sigma^2=E(T^2)-(E(T))^2"
"=\\dfrac{1.4975}{14}-(0.325)^2\\approx0.001339"
"\\sigma=\\sqrt{\\sigma^2}\\approx\\sqrt{0.001339}\\approx0.0366"
Comments
Leave a comment