Let X be a random variable with the following probability distribution:
X
-3
6
9
P(X=x)
1/6
1/2
1/3
If the function of random variable is defined as f(X) = (2X+1)2, find µg(X).
E[(2X+1)2]=(−3∗2+1)2∗16+(6∗2+1)2∗12+(9∗2+1)2∗13=E[(2X+1)^2]=(-3*2+1)^2*\frac{1}{6}+(6*2+1)^2*\frac{1}{2}+(9*2+1)^2*\frac{1}{3}=E[(2X+1)2]=(−3∗2+1)2∗61+(6∗2+1)2∗21+(9∗2+1)2∗31=
=12546=209.=\frac{1254}{6}=209.=61254=209.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments