A study of corruption for a certain geographic region showed an average of 5 corruptions occur per 20,000 people. In a city of 80,000 people, find the probability that at least 3 corruptions occur.
"P(X=x)= \\frac{e^{-\u03bb}\u03bb^x}{x!} \\\\\n\u03bb= 5 \\times \\frac{80000}{20000}= 20 \\\\\nP(X\u22653) = 1- [P(X=0) + P(X=1) +P(X=2)] \\\\ \n= 1 -[\\frac{e^{-20} \\times 20^0}{0!} + \\frac{e^{-20} \\times 20^1}{1!} + \\frac{e^{-20} \\times 20^2}{2!}] \\\\\n= 1 -e^{-20}(1 + 20 + 200) \\\\\n= 1 -221 \\times e^{-20} \\\\\n= 0.99999"
Comments
Leave a comment