A study of corruption for a certain geographic region showed an average of 5 corruptions occur per 20,000 people. In a city of 80,000 people, find the probability that at least 3 corruptions occur.
P(X=x)=e−λλxx!λ=5×8000020000=20P(X≥3)=1−[P(X=0)+P(X=1)+P(X=2)]=1−[e−20×2000!+e−20×2011!+e−20×2022!]=1−e−20(1+20+200)=1−221×e−20=0.99999P(X=x)= \frac{e^{-λ}λ^x}{x!} \\ λ= 5 \times \frac{80000}{20000}= 20 \\ P(X≥3) = 1- [P(X=0) + P(X=1) +P(X=2)] \\ = 1 -[\frac{e^{-20} \times 20^0}{0!} + \frac{e^{-20} \times 20^1}{1!} + \frac{e^{-20} \times 20^2}{2!}] \\ = 1 -e^{-20}(1 + 20 + 200) \\ = 1 -221 \times e^{-20} \\ = 0.99999P(X=x)=x!e−λλxλ=5×2000080000=20P(X≥3)=1−[P(X=0)+P(X=1)+P(X=2)]=1−[0!e−20×200+1!e−20×201+2!e−20×202]=1−e−20(1+20+200)=1−221×e−20=0.99999
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments