Question #220115

4. Refer to the previous problem. How large a sample would be required to estimate the population proportion to within .05 with 95 percent confidence (.30 is the best available estimate of p): (a) If the finite population correction can be ignored? (b) If the finite population correction is not ignored and N 1500


1
Expert's answer
2021-07-27T06:05:27-0400

The margin of error for constructing a 100(1-α) % confidence interval for population proportion when the finite population correction can be ignored is

E=Zα/2×p^(1p^)nE = Z_{α/2}\times \sqrt{\frac{\hat{p}(1- \hat{p})}{n}}

p^\hat{p} = sample proportion

n = sample size

α = 1 – conference level

When the finite population correction is not ignored, then the margin of error is

E=Zα/2×p^(1p^)n×NnN1E = Z_{α/2}\times \sqrt{\frac{\hat{p}(1- \hat{p})}{n}} \times \sqrt{\frac{N-n}{N-1}}

N= the population size

α=10.95=0.05Zα/2=Z0.05/2=Z0.025=1.96E=0.05p^=0.30α=1-0.95=0.05 \\ Z_{α/2}=Z_{0.05/2}=Z_{0.025}=1.96 \\ E=0.05 \\ \hat{p}=0.30

(a)

E=Zα/2×p^(1p^)n0.05=1.96×0.30(10.30)nn=(1.96)2×0.30×0.70(0.05)2n=322.69323E = Z_{α/2}\times \sqrt{\frac{\hat{p}(1- \hat{p})}{n}} \\ 0.05 = 1.96 \times \sqrt{\frac{0.30(1- 0.30)}{n}} \\ n = \frac{(1.96)^2 \times 0.30 \times 0.70}{(0.05)^2} \\ n=322.69 ≈323

The required sample size is n=323.

(b) N=1500

E=Zα/2×p^(1p^)n×NnN10.05=1.96×0.30(10.30)n×1500n15001(0.05)2=(1.96)2×0.30×0.70n×1500n14991500nn=(0.05)2×1499(1.96)2×0.30×0.701500nn=4.645261500n1=4.64526n=15004.64526+1n=265.71266E = Z_{α/2}\times \sqrt{\frac{\hat{p}(1- \hat{p})}{n}} \times \sqrt{\frac{N-n}{N-1}} \\ 0.05 = 1.96\times \sqrt{\frac{0.30(1- 0.30)}{n}} \times \sqrt{\frac{1500-n}{1500-1}} \\ (0.05)^2 = (1.96)^2 \times \frac{0.30 \times 0.70}{n} \times \frac{1500-n}{1499} \\ \frac{1500-n}{n}= \frac{(0.05)^2 \times 1499}{(1.96)^2 \times 0.30 \times 0.70} \\ \frac{1500-n}{n}= 4.64526 \\ \frac{1500}{n}-1= 4.64526 \\ n = \frac{1500}{4.64526+1} \\ n = 265.71 ≈266

The required sample size is n=266.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS