Answer to Question #218574 in Statistics and Probability for Marcus Maraka

Question #218574
2 x 4
1
Expert's answer
2021-07-19T05:42:48-0400
"f(x)=\\begin{cases}\n kx & 2\\leq x\\leq 4 \\\\\n 0 & otherwise \n\\end{cases}"

"\\displaystyle\\int_{-\\infin}^{\\infin}f(x)dx=\\displaystyle\\int_{2}^{4}kxdx=[\\dfrac{kx^2}{2}]\\begin{matrix}\n 4\\\\\n 2\n\\end{matrix}"


"=\\dfrac{16k}{2}-\\dfrac{4k}{2}=6k=1=>k=\\dfrac{1}{6}"

"E[X]=\\displaystyle\\int_{2}^{4}x(\\dfrac{1}{6}x)dx=[\\dfrac{x^3}{18}]\\begin{matrix}\n 4\\\\\n 2\n\\end{matrix}"


"=\\dfrac{64}{18}-\\dfrac{8}{18}=\\dfrac{28}{9}"

"E[X^2]=\\displaystyle\\int_{2}^{4}x^2(\\dfrac{1}{6}x)dx=[\\dfrac{x^4}{24}]\\begin{matrix}\n 4\\\\\n 2\n\\end{matrix}"


"=\\dfrac{256}{24}-\\dfrac{16}{24}=10"

"Var(X)=\\sigma^2=E[X^2]-(E[X])^2=10-(\\dfrac{28}{9})^2=\\dfrac{26}{81}"

"\\sigma=\\sqrt{\\sigma^2}=\\dfrac{\\sqrt{26}}{9}\\approx0.5666"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS