"\\displaystyle\\int_{-\\infin}^{\\infin}f(x)dx=\\displaystyle\\int_{2}^{4}kxdx=[\\dfrac{kx^2}{2}]\\begin{matrix}\n 4\\\\\n 2\n\\end{matrix}"
"E[X]=\\displaystyle\\int_{2}^{4}x(\\dfrac{1}{6}x)dx=[\\dfrac{x^3}{18}]\\begin{matrix}\n 4\\\\\n 2\n\\end{matrix}"
"E[X^2]=\\displaystyle\\int_{2}^{4}x^2(\\dfrac{1}{6}x)dx=[\\dfrac{x^4}{24}]\\begin{matrix}\n 4\\\\\n 2\n\\end{matrix}"
"Var(X)=\\sigma^2=E[X^2]-(E[X])^2=10-(\\dfrac{28}{9})^2=\\dfrac{26}{81}"
"\\sigma=\\sqrt{\\sigma^2}=\\dfrac{\\sqrt{26}}{9}\\approx0.5666"
Comments
Leave a comment