Let A and B are the bivariate continuous random variables. The joint probability density function is given by π(π, π) = { π 2ππ₯ 0 < π < 3, 0 < π < 2; 0 otherwise. (i) Determine the value of x for which the function can serve as a joint probability density function. (ii) Find the marginal density function of B. (iii) Find π(π < 1|π = 1) Β
(i)
"=x\\displaystyle\\int_{0}^{3}a^2[\\dfrac{b^2}{2}]\\begin{matrix}\n 2 \\\\\n 0\n\\end{matrix}da=2x\\displaystyle\\int_{0}^{3}a^2da"
"=2x[\\dfrac{a^3}{3}]\\begin{matrix}\n 3 \\\\\n 0\n\\end{matrix}=18x=1=>x=\\dfrac{1}{18}"
(ii)
"= \\dfrac{1}{18}b[\\dfrac{a^3}{3}]\\begin{matrix}\n 3 \\\\\n 0\n\\end{matrix}=\\dfrac{1}{2}b"
"f_B(b) = \\begin{cases}\n \\dfrac{1}{2}b, & 0\\leq b\\leq 2 \\\\\n 0, & otherwise\n\\end{cases}"
(iii) For "0\\leq b\\leq 2" we obtain
"f(a<1|b=1)=\\displaystyle\\int_{0}^{1} \\dfrac{1}{9}a^2da=\\dfrac{1}{27}"
Comments
Leave a comment