i) If A and B are independent then P(A∩B)=P(A)P(B). Then
x(x+0.2)=0.15⇒x2+0.2x−0.15=0
D=0.04+0.6=0.64
x1=2−0.2−0.8=−0.5
x2=2−0.2+0.8=0.3
Since P(A)>0 then x=0.3.
Answer: x=0.3
ii)
P(A)=x=0.3
P(B)=x+0.2=0.5
Lets find
P(A∪B)=P(A)+P(B)−P(A∩B)=0.3+0.5−0.15=0.65
Lets find
P(AC)=1−P(A)=0.7
P(BC)=1−P(B)=0.5
Then
P(AC∩BC)=P(AC)P(BC)=0.7⋅0.5=0.35
So
P(AC\BC)=P(AC)−P(AC∩BC)=0.7−0.35=0.35
Answer: P(A∪B)=0.65 , P(AC\BC)=0.35
Comments