Question #218234

Supposed that 8P( A U B )=5 and 2x/[P(A)]=1 where P(B) =x.

i) For what values of x are A and B mutually exclusive? For this value of x, are A and B independent?


ii) For what values of x, are A and B independent?


Determine whether for this value of x, A and B are mutually exclusive.


1
Expert's answer
2021-07-19T05:46:16-0400
8P(AB)=5=>P(AB)=588P(A\cup B)=5=>P(A\cup B)=\dfrac{5}{8}

2xP(A)=1,P(B)=x\dfrac{2x}{P(A)}=1, P(B)=x

i. If AA and BB are mutually exclusive, then P(AB)=0.P(A\cap B)=0. Hence


P(AB)=P(A)+P(B)P(AB)P(A\cup B)=P(A)+P(B)-P(A\cap B)

=P(A)+P(B)0=P(A)+P(B)=P(A)+P(B)-0=P(A)+P(B)

58=2x+x\dfrac{5}{8}=2x+x

x=524x=\dfrac{5}{24}

If AA and BB are independent, then P(AB)=P(A)P(B).P(A\cap B)=P(A)P(B).


Since P(AB)=0,P(A)0,P(B)0,P(A\cap B)=0, P(A)\not=0, P(B)\not=0, then AA and BB are not independent.


ii.

If AA and BB are independent, then P(AB)=P(A)P(B)P(A\cap B)=P(A)P(B)

Then


P(AB)=P(A)+P(B)P(AB)P(A\cup B)=P(A)+P(B)-P(A\cap B)

=P(A)+P(B)P(A)P(B)=P(A)+P(B)-P(A)P(B)

58=2x+xx(2x)\dfrac{5}{8}=2x+x-x(2x)

16x224x+5=016x^2-24x+5=0

x=24±(24)24(16)(5)2(16)=3±24x=\dfrac{24\pm\sqrt{(24)^2-4(16)(5)}}{2(16)}=\dfrac{3\pm2}{4}

Since 0x12,0\leq x\leq\dfrac{1}{2}, we take x=324=14.x=\dfrac{3-2}{4}=\dfrac{1}{4}.


P(A)=12,P(B)=14,P(AB)=12(14)=180P(A)=\dfrac{1}{2}, P(B)=\dfrac{1}{4}, P(A\cap B)=\dfrac{1}{2}(\dfrac{1}{4})=\dfrac{1}{8}\not=0

Since P(AB)0,P(A\cap B)\not=0, then AA and BB are not mutually exclusive.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS