8 P ( A ∪ B ) = 5 = > P ( A ∪ B ) = 5 8 8P(A\cup B)=5=>P(A\cup B)=\dfrac{5}{8} 8 P ( A ∪ B ) = 5 => P ( A ∪ B ) = 8 5
2 x P ( A ) = 1 , P ( B ) = x \dfrac{2x}{P(A)}=1, P(B)=x P ( A ) 2 x = 1 , P ( B ) = x i. If A A A and B B B are mutually exclusive, then P ( A ∩ B ) = 0. P(A\cap B)=0. P ( A ∩ B ) = 0. Hence
P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P(A\cup B)=P(A)+P(B)-P(A\cap B) P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B )
= P ( A ) + P ( B ) − 0 = P ( A ) + P ( B ) =P(A)+P(B)-0=P(A)+P(B) = P ( A ) + P ( B ) − 0 = P ( A ) + P ( B )
5 8 = 2 x + x \dfrac{5}{8}=2x+x 8 5 = 2 x + x
x = 5 24 x=\dfrac{5}{24} x = 24 5
If A A A and B B B are independent, then P ( A ∩ B ) = P ( A ) P ( B ) . P(A\cap B)=P(A)P(B). P ( A ∩ B ) = P ( A ) P ( B ) .
Since P ( A ∩ B ) = 0 , P ( A ) ≠ 0 , P ( B ) ≠ 0 , P(A\cap B)=0, P(A)\not=0, P(B)\not=0, P ( A ∩ B ) = 0 , P ( A ) = 0 , P ( B ) = 0 , then A A A and B B B are not independent.
ii.
If A A A and B B B are independent, then P ( A ∩ B ) = P ( A ) P ( B ) P(A\cap B)=P(A)P(B) P ( A ∩ B ) = P ( A ) P ( B )
Then
P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P(A\cup B)=P(A)+P(B)-P(A\cap B) P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B )
= P ( A ) + P ( B ) − P ( A ) P ( B ) =P(A)+P(B)-P(A)P(B) = P ( A ) + P ( B ) − P ( A ) P ( B )
5 8 = 2 x + x − x ( 2 x ) \dfrac{5}{8}=2x+x-x(2x) 8 5 = 2 x + x − x ( 2 x )
16 x 2 − 24 x + 5 = 0 16x^2-24x+5=0 16 x 2 − 24 x + 5 = 0
x = 24 ± ( 24 ) 2 − 4 ( 16 ) ( 5 ) 2 ( 16 ) = 3 ± 2 4 x=\dfrac{24\pm\sqrt{(24)^2-4(16)(5)}}{2(16)}=\dfrac{3\pm2}{4} x = 2 ( 16 ) 24 ± ( 24 ) 2 − 4 ( 16 ) ( 5 ) = 4 3 ± 2 Since 0 ≤ x ≤ 1 2 , 0\leq x\leq\dfrac{1}{2}, 0 ≤ x ≤ 2 1 , we take x = 3 − 2 4 = 1 4 . x=\dfrac{3-2}{4}=\dfrac{1}{4}. x = 4 3 − 2 = 4 1 .
P ( A ) = 1 2 , P ( B ) = 1 4 , P ( A ∩ B ) = 1 2 ( 1 4 ) = 1 8 ≠ 0 P(A)=\dfrac{1}{2}, P(B)=\dfrac{1}{4}, P(A\cap B)=\dfrac{1}{2}(\dfrac{1}{4})=\dfrac{1}{8}\not=0 P ( A ) = 2 1 , P ( B ) = 4 1 , P ( A ∩ B ) = 2 1 ( 4 1 ) = 8 1 = 0 Since P ( A ∩ B ) ≠ 0 , P(A\cap B)\not=0, P ( A ∩ B ) = 0 , then A A A and B B B are not mutually exclusive.
Comments