8P(A∪B)=5=>P(A∪B)=85
P(A)2x=1,P(B)=xi. If A and B are mutually exclusive, then P(A∩B)=0. Hence
P(A∪B)=P(A)+P(B)−P(A∩B)
=P(A)+P(B)−0=P(A)+P(B)
85=2x+x
x=245
If A and B are independent, then P(A∩B)=P(A)P(B).
Since P(A∩B)=0,P(A)=0,P(B)=0, then A and B are not independent.
ii.
If A and B are independent, then P(A∩B)=P(A)P(B)
Then
P(A∪B)=P(A)+P(B)−P(A∩B)
=P(A)+P(B)−P(A)P(B)
85=2x+x−x(2x)
16x2−24x+5=0
x=2(16)24±(24)2−4(16)(5)=43±2 Since 0≤x≤21, we take x=43−2=41.
P(A)=21,P(B)=41,P(A∩B)=21(41)=81=0 Since P(A∩B)=0, then A and B are not mutually exclusive.
Comments