(a)
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c:c}\n & X & Y & XY & X^2 & Y^2 \\\\ \\hline\n & 40 & 35 & 1400 & 1600 & 1225 \\\\\n \\hdashline\n & 20 & 40 & 800 & 400 & 1600 \\\\\n \\hdashline\n & 25 & 40 & 1000 & 625 & 1600 \\\\\n \\hdashline\n & 20 & 35 & 700 & 400 & 1225 \\\\\n \\hdashline\n & 30 & 45 & 1350 & 900 & 2025 \\\\\n \\hdashline\n & 50 & 50 & 2500 & 2500 & 2500 \\\\\n \\hdashline\n & 40 & 45 & 1800 & 1600 & 2025 \\\\\n \\hdashline\n & 20 & 40 & 800 & 400 & 1600 \\\\\n \\hdashline\n & 50 & 55 & 2750 & 2500 & 3025 \\\\\n \\hdashline\n & 40 & 55 & 1100 & 1600 & 3025 \\\\\n \\hdashline\n Sum= & 335 & 440 & 15300 & 12525 & 19850 \\\\\n \\hdashline\n\\end{array}"
"\\bar{X}=\\dfrac{1}{n}\\sum _iX_i=\\dfrac{335}{10}=33.5"
"\\bar{Y}=\\dfrac{1}{n}\\sum _iY_i=\\dfrac{440}{10}=44"
"SS_{XX}=\\sum _iX_i^2-\\dfrac{1}{n}(\\sum _iX_i)^2=12525-\\dfrac{335^2}{10}"
"=1302.5"
"SS_{YY}=\\sum _iY_i^2-\\dfrac{1}{n}(\\sum _iY_i)^2=19850-\\dfrac{440^2}{10}"
"=490"
"SS_{XY}=\\sum _iX_iY_i-\\dfrac{1}{n}(\\sum _iX_i)(\\sum _iY_i)"
"=15300-\\dfrac{335(440)}{10}=560"
"slope=m=\\dfrac{SS_{XY}}{SS_{XX}}=\\dfrac{560}{1302.5}=0.42994242"
"n=\\bar{Y}-m\\bar{X}=44-0.42994242(33.5)"
"=29.59692893"We find that the regression equation is:
"y=29.596929+0.429942x"
(b)
"R^2=\\dfrac{(SS_{XY})^2}{SS_{XX}SS_{YY}}=\\dfrac{560^2}{1302.5(490)}=0.49136276"
"r=\\sqrt{R^2}=\\sqrt{0.49136276}=0.7010>0.7" Strong positive correlation.
(c)
"x=35"
"y=29.596929+0.429942(35)=45" Weekly advertising expenditure 35000 rupees will give 45000 rupees sales.
Comments
Leave a comment