Question #218189
https://www.chegg.com/homework-help/questions-and-answers/question-08-subjective-question-hence-write-answer-text-field-given--8-marks-retail-mercha-q66655636
1
Expert's answer
2022-01-31T16:10:17-0500

(a)


XYXYX2Y240351400160012252040800400160025401000625160020357004001225304513509002025505025002500250040451800160020252040800400160050552750250030254055110016003025Sum=335440153001252519850\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c} & X & Y & XY & X^2 & Y^2 \\ \hline & 40 & 35 & 1400 & 1600 & 1225 \\ \hdashline & 20 & 40 & 800 & 400 & 1600 \\ \hdashline & 25 & 40 & 1000 & 625 & 1600 \\ \hdashline & 20 & 35 & 700 & 400 & 1225 \\ \hdashline & 30 & 45 & 1350 & 900 & 2025 \\ \hdashline & 50 & 50 & 2500 & 2500 & 2500 \\ \hdashline & 40 & 45 & 1800 & 1600 & 2025 \\ \hdashline & 20 & 40 & 800 & 400 & 1600 \\ \hdashline & 50 & 55 & 2750 & 2500 & 3025 \\ \hdashline & 40 & 55 & 1100 & 1600 & 3025 \\ \hdashline Sum= & 335 & 440 & 15300 & 12525 & 19850 \\ \hdashline \end{array}

Xˉ=1niXi=33510=33.5\bar{X}=\dfrac{1}{n}\sum _iX_i=\dfrac{335}{10}=33.5

Yˉ=1niYi=44010=44\bar{Y}=\dfrac{1}{n}\sum _iY_i=\dfrac{440}{10}=44

SSXX=iXi21n(iXi)2=12525335210SS_{XX}=\sum _iX_i^2-\dfrac{1}{n}(\sum _iX_i)^2=12525-\dfrac{335^2}{10}

=1302.5=1302.5


SSYY=iYi21n(iYi)2=19850440210SS_{YY}=\sum _iY_i^2-\dfrac{1}{n}(\sum _iY_i)^2=19850-\dfrac{440^2}{10}

=490=490

SSXY=iXiYi1n(iXi)(iYi)SS_{XY}=\sum _iX_iY_i-\dfrac{1}{n}(\sum _iX_i)(\sum _iY_i)

=15300335(440)10=560=15300-\dfrac{335(440)}{10}=560

slope=m=SSXYSSXX=5601302.5=0.42994242slope=m=\dfrac{SS_{XY}}{SS_{XX}}=\dfrac{560}{1302.5}=0.42994242

n=YˉmXˉ=440.42994242(33.5)n=\bar{Y}-m\bar{X}=44-0.42994242(33.5)

=29.59692893=29.59692893

We find that the regression equation is:


y=29.596929+0.429942xy=29.596929+0.429942x

(b)


R2=(SSXY)2SSXXSSYY=56021302.5(490)=0.49136276R^2=\dfrac{(SS_{XY})^2}{SS_{XX}SS_{YY}}=\dfrac{560^2}{1302.5(490)}=0.49136276

r=R2=0.49136276=0.7010>0.7r=\sqrt{R^2}=\sqrt{0.49136276}=0.7010>0.7

Strong positive correlation.


(c)

x=35x=35


y=29.596929+0.429942(35)=45y=29.596929+0.429942(35)=45

Weekly advertising expenditure 35000 rupees will give 45000 rupees sales.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS