Question #217985
The weekly wages of employees of volta gold normally distributed about a mean of $1250 with a standard deviation of $120. Find the probability of an employee having a weekly weekly wage lying. I. Between $1,320 and $970. ii. Under $1,400. iii. Over $1,290
1
Expert's answer
2021-07-19T07:29:59-0400

μ=1250σ=120i.  P(970<X<1320)=P(X<1320)P(X<970)=P(Z<13201250120)P(Z<9701250120)=P(Z<0.5833)P(Z<2.333)=0.720050.00982=0.71023ii.  P(X<1400)=P(Z<14001250120)=P(Z<1.25)=0.8943iii.  P(X>1290)=1P(X<1290)=1P(Z<12901250120)=1P(Z<0.3333)=10.63043=0.36957\mu=1250 \\ \sigma=120 \\ i. \; P(970<X<1320) = P(X<1320) -P(X<970) \\ = P(Z< \frac{1320-1250}{120}) -P(Z< \frac{970-1250}{120}) \\ = P(Z< 0.5833) -P(Z< -2.333) \\ = 0.72005-0.00982 \\ = 0.71023 \\ ii. \;P(X<1400) = P(Z< \frac{1400-1250}{120}) \\ =P(Z< 1.25) \\ = 0.8943 \\ iii. \; P(X>1290) = 1 -P(X<1290) \\ = 1 -P(Z< \frac{1290-1250}{120}) \\ = 1 -P(Z<0.3333) \\ = 1 -0.63043 \\ = 0.36957


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Yaw
16.07.21, 18:23

You are perfect

LATEST TUTORIALS
APPROVED BY CLIENTS